
E�cient Construction of Regression Trees

with Range and Region Splitting �

Yasuhiko Morimoto

IBM Tokyo Research Laboratory

morimoto@trl.ibm.co.jp

Hiromu Ishii

University of Tokyo

hiromu@ims.u-tokyo.ac.jp

Shinichi Morishita

IBM Tokyo Research Laboratory

morisita@trl.ibm.co.jp

Abstract

We propose an e�cient way of constructing re-
gression trees in order to predict the objective nu-
meric attribute values of given tuples. A regres-
sion tree is a rooted binary tree such that each
internal node contains a test, which can be ex-
pressed as an RDB query, for splitting tuples into
two disjoint classes and passing data in each class
down to the left or right subtree. The mean of
the objective attribute values at the leaf is used
as the predicted value of the tuple.

To test a numeric attribute, traditional ap-
proaches use a guillotine-cut splitting that classi-
�es data into those below a given value and others.
Instead, we consider a family R of grid-regions in
the plane associated with two given numeric at-
tributes. We propose to use a test that splits data
into those that lie inside a region R and those that
lie outside.

The contributions of this paper are as follows.
We present an e�cient algorithm for computing
R 2 R that minimizes the mean squared error
after the introduction of the test with the region
R. Experiments con�rmed that the use of region
splitting gives a smaller mean squared error of re-
gression trees. Our approach can also generate
smaller regression trees.

�This research is partially supported by the Advanced Soft-
ware Enrichment Project of the Information-Technology Promo-
tion Agency.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the VLDB copyright notice and

the title of the publication and its date appear, and notice is

given that copying is by permission of the Very Large Data Base

Endowment. To copy otherwise, or to republish, requires a fee

and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference

Athens, Greece, 1997

1 Introduction

In recent years data mining, knowledge discovery from
large databases, has attracted considerable attention in
the database community, because many organizations have
a strong interest in discovering unexpected and valuable
rules in their huge databases. E�cient construction of asso-
ciation rules [AIS93, AS94, HF95, PS91] and decision trees
[Qui86, Qui93] has been widely studied in the database
literature, because data mining in large databases is such
a challenging database query optimization problem. An-
other important reason is that association rules and tests
used in decision trees can be directly expressed as stan-
dard relational database (RDB) queries, and are therefore
e�ciently executable by RDB systems. Thus automatic
discovery of such rules and tests is highly promising as a
means of enhancing the power of the decision support as-
pect of relational database systems.

Data Mining for Predicting Categorical Values

We treat one attribute as special, and call it the objec-

tive attribute. The other attributes are called conditional

attributes. Our goal is to �nd some conditional attribute
tests for characterizing the properties of the objective at-
tribute.

Let X denote an attribute whose domain of data is cat-
egorical, that is, unordered discrete. We select X as the
objective attribute. Let C denote a test on conditional at-
tributes. An association rule has the form C) (X = a),
which means that if a tuple t satis�es C, A's value of
t is equal to a with high probability. Some e�cient
ways of computing association rules have been proposed
[AS94, PCY95], and some extended association rules with
ranges and regions in the condition C have been studied
[FMMT96a, FMMT96b, SA96]. A set of association rules
of the form C) (X = x) is useful for predicting the ob-
jective attribute value of X for given data.

A decision tree is a rooted binary tree structure for pre-
dicting the categorical values of the objective attribute for
all data. Each internal node has a test on conditional at-
tributes that splits data into two classes. A tuple is re-
cursively tested at internal nodes and eventually reaches

a leaf node. A good decision tree has the property that
almost all the tuples arriving at every leaf node take a sin-
gle value of the objective categorical attribute with a high
probability, and therefore that value could be a good pre-
dictor of the objective attribute. Decision trees have been
studied in the AI community for many years [PSF91], and
recently e�cient construction of decision trees from large
databases has also been investigated in the database com-
munity [MAR96, FMMT96c].

Association rules and decision trees could be used for
predicting the value of the objective numeric attribute, if
we treat the attribute as a categorical one by sub-dividing
its range into smaller sub-ranges and using those sub-
ranges as unordered discrete items. This modi�cation,
however, does not directly handle the objective numeric
attribute, and hence it is hard to guarantee high predic-
tion accuracy.

Regression Tree for Predicting Ordered Nu-

meric Values

In this paper, as a tool for predicting ordered numeric val-
ues, we will study regression trees, which are similar to
decision trees in the sense that tests at internal nodes of re-
gression trees are also expressible as standard RDB queries.
In what follows, we therefore assume that the objective at-
tribute is numeric. The mean of the objective attribute
values at the leaf is used as the predicted value of the tu-
ple.

We evaluate the quality of a regression tree by the mean
squared error; that is, the average of the squared di�er-
ence between the actual value and the predicted value of
each tuple. Our goal is to construct a regression tree with
a small mean squared error. The most common way of
achieving this has been to greedily generate a new internal
node which has a test that minimizes the mean squared
error if the node is added to the current tree.

Breiman, Friedman, Olshen, and Stone [BFOS84] in-
tensively investigated the usefulness of regression trees by
applying them to many practical problems such as air pol-
lution and criminal justice. According to their experiments
[BFOS84], the accuracy of regression trees has been gener-
ally competitive with that of linear regression (e.g., the line
estimator method). To be more precise, regression trees
may be much more accurate in non-linear problems but
tend to be less accurate in problems with good linear struc-
ture. This implies that tree-structured regression presents
an interesting alternative for investigating regression-type
problems. Furthermore, in practice, looking at real prob-
lems from di�erent viewpoints allows us to make better
predictions.

In this paper, therefore, we work on the improvement
of Breiman et al.'s method for creating regression trees.
Breiman et al.'s approach uses a test with a cut value that
classi�es data into those below the cut value and others,
to minimize the mean squared error. Such a test is called
a \guillotine-cut."

In practice we are often faced with various non-linear
relationships. For instance, consider the case when two
conditional numeric attributes have a strong correlation

Y M W BPS GDM ... GOLD SP500
85 12 52 1.44353 0.40746 ... 326.00 210.88

86 1 1 1.44612 0.40805 ... 339.45 205.96

86 1 2 1.43794 0.40485 ... 357.25 208.43

86 1 3 1.40470 0.40879 ... 355.25 206.43

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. ...
.
.
.

.

.

.

93 5 18 1.56875 0.63384 ... 357.50 442.31

Table 1: Currency Data

with respect to the objective numeric attribute. In this
case, a test with a region for splitting data into two classes
is natural and therefore much more e�ective as a means
of reducing the mean squared error of the objective values
than many guillotine-cut tests.

Motivating Example

Table 1 shows a part of the relation that was collected
from the New York currency markets every Monday from
the last Monday in 1985 through the �rst Monday of
May 1993. It contains 10 numeric attributes that are W
(week), M (month), Y (year), BPS (British pound sterling,
i.e., US$/pound), GDM (deutschmark, i.e., US$/mark),
YEN (Japanese yen, i.e., US$/yen), TB3M (3-month Trea-
sury bill yields), TB30Y (30-years Treasury bill yields),
GOLD (US$/ounce), and SP500 (Standard and Poors in-
dex). Suppose we are interested in SP500, which is one of
the indices for measuring the overall market performance
on the New York Stock Exchange. To predict the value of
SP500 from the value of other attributes, let us construct
a regression tree.

Figure 1 illustrates a node in the regression tree gener-
ated by our method. The top histogram shows the data
distribution of 384 records in Table 1 along with the values
of SP500, which range from 190 to 460 and are divided into
subranges with a uniform width of 10. The data in the top
histogram are then split by the region R in the middle of
Figure 1. R is a region in the Euclidean plane whose x-axis
is the GDM (mark) price and whose y-axis is the GOLD
price. The bottom-left histogram and bottom-right his-
togram respectively show the data distribution of records
inside the region R and that of records outside R. The
number of tuples, and the average and variance of SP500
values in those three histograms are:

No. of Tuples Average Variance

Top 384 324 4430

Bottom-left 155 391 1117

Bottom-right 229 278 1535

The region R is chosen to minimize the sum of the mean
squared errors of the two subsets after the split. From
the shape of R, we can see that a lower gold price (lower
than 368) is generally related to a higher SP500 index.
Also, when the value of GDM is between 0.56 and 0.60,
the SP500 index is likely to be high if gold is not too high.
Although we only present a node in a regression tree here,
in general we recursively generate internal nodes until we
cannot signi�cantly improve the mean squared error of the
tree.

tuples outside
the region

tuples inside
the region

all tuples

Figure 1: Region Splitting

Main Results

To con�rm the e�ectiveness of splitting by regions, we pro-
vide positive answers to the following questions:

1. Can we e�ciently compute the optimal region that
minimizes the mean squared error after the addition
of the test with the region?

2. In practice, does region-splitting give a more accurate
regression tree than a guillotine-cut?

3. Is it easy to comprehend substantial non-linear rela-
tionships among attributes?

With regard to the �rst question, we begin by de�ning
"regions," which are expressed as RDB queries. Let n be
the total number of tuples in the database. In practice,
n ranges from hundreds to millions. For each numeric at-
tribute, we generate an equi-depth bucketing so that tuples
are uniformly distributed intoN ordered buckets. Next, for
each pair of numeric attributes, we create an N �N pixel
gridG according to the Cartesian product of the bucketing
of each numeric attribute. A grid region is a union of pixels
ofG that are connected, and it is x-monotone if its intersec-
tion with each column of G is undivided. For instance, the
grid region in the middle of Figure 1 is x-monotone. We
can express an x-monotone region by a disjunction of ex-
pressions of the form (a1 < x < a2) and (b1 < y < b2)

that shows the intersection of the region with a column.
An x-monotone region is rectilinear if its intersection with
each row of G is also undivided.

We consider the class of x-monotone regions, the class of
rectilinear regions, and the class of rectangular regions. For
each class, we present an algorithm for computing the opti-
mal region that minimizes the mean squared error. The ex-

pected running time complexities of those three algorithms
for x-monotone regions, rectilinear regions, and rectangu-
lar regions are O(N3 logN), O(N 4 logN), O(N3 logN),
respectively. If we use N � n

1=3 buckets, the ex-
pected time complexities of the algorithms are O(n log n),
O(n4=3 log n), and O(n log n), respectively.

With respect to the second question, we performed N -
fold cross-validation analysis; that is, we randomly divided
the given database into N equal-sized subsets, built a re-
gression tree from the union of N � 1 subsets, and evalu-
ated the mean squared error of the regression tree against
the remaining one subset of data. Tests showed that the
mean squared error of regression trees with region splitting
is smaller than that of conventional regression trees with
guillotine-cut splitting. Our approach can also generate
compact regression trees.

Figure 1 shows the answer to our last question. Without
the region rules it is hard to grasp the substantial non-
linear correlation, which a�ects the SP500 index.

2 Regression Tree

Tests on Conditional Attributes

Let D denote a relation scheme, which is a set of categorical
or numeric attributes. Let t be a tuple over D, and let
t[A] denote the value for attribute A. We select a numeric
attribute A as special and call it the objective attribute.
We call the other attributes in D conditional attributes.

For a categorical conditional attribute B, a primitive

test has the form B = b, where b is an element in the do-
main of B. A tuple t satis�es a test of the form B = b if
t[B] is equal to b. A test on a categorical conditional at-
tribute is a Boolean combination of the primitive tests. For
numeric conditional attributes B and C, we use primitive
tests such as B < b, B 2 [b1; b2] and (B;C) 2 R, where b,
b1, and b2 are elements in the domain of B, and R is a con-
nected region in the Euclidean plane associated with B and
C. The value of t satis�es B 2 [b1; b2] if b1 � t[B] � b2,
and satis�es (B;C) 2 R if (t[B]; t[C]) is mapped to the
region R.

Regression Trees

A regression tree is a rooted binary tree such that each
internal node is associated with a test. At an internal node
(initially the root node), we check whether a given tuple
meets the test of the node. If the tuple satis�es the test,
it goes down to the left subtree. Otherwise it goes to the
right subtree. A tuple is recursively checked at internal
nodes and �nally reaches a leaf node. Note that any tuple
t reaches a unique leaf node, which we denote by leaf (t).
Then we say that t belongs to the leaf node leaf (t).

We generate a regression tree T from a speci�c instance
of relation D over D. D is called a training data. Let w
denote a node in a regression tree T , and let Dw denote the
set of tuples in D that reach the node w. In what follows,
we assume that Dw is not empty. Let jDwj denote the
number of tuples in Dw, and let �(Dw) denote the average
of A's values inDw; that is, �(Dw) = (1=jDwj)

P
t2Dw

t[A].

Mean Squared Error

Suppose that we are given another instance of the relation
D
0 over D. For each tuple t in D

0, we �nd the leaf node
leaf(t), and we use �(Dleaf(t)) as a predictor of t[A]. In
order to evaluate the prediction error of T against rela-
tion D0, we use the mean squared error, the average of the
squared di�erence between the actual objective attribute
value and the prediction for all the tuples; that is,

P
t2D0(t[A]� �(Dleaf(t)))

2

jD0j
;

which we will denote by MSE(T;D0).

When we are given a training relation D, we do not
know what instances of D will be given as test data. Thus
we try to generate a regression tree T such that the mean
squared error of T against the training relation D, namely
MSE(T;D), is small. To construct such a tree T , Breiman
et al. propose a greedy method that selects a leaf of T
arbitrarily and generates further leaves from it by applying
the test that minimizes the mean squared error of T . We
start with a tree that has only a root, and recursively apply
the above generation until we cannot signi�cantly improve
the mean squared error of T against D.

Guillotine Cut Splitting on Numeric Attributes

For a numeric attribute B, Breiman et al. consider only
a test of the form B < b, which is called a guillotine-cut

splitting. Suppose that we select a leaf w to partition.
Among all the instances of guillotine cut splitting, Breiman
et al.'s method selects the optimal one | sayB < b| that
minimizes the mean squared error. B < b partitions Dw

into Dlow

w = ft 2 Dw j t[B] < bg and D
high

w = ft 2 Dw j

b � t[B]g, and it minimizes

P
t2D

low
w

(t[A] � �(Dlow

w))2 +
P

t2D
high
w

(t[A] � �(Dhigh

w))2

jDwj
:

3 Range and Region Splitting

In this paper, we propose to consider a broader class of
tests such as a range splitting of the form B 2 [b1; b2] and a
region splitting of the form (B;C) 2 R. Since ranges can be
treated as special cases of regions, we focus on computing
the region that minimizes the mean squared error. Suppose
that we choose a leaf w to divide. De�ne

D
in

w = ft 2 Dw j (t[B]; t[C]) 2 Rg, and Dout

w = Dw �D
in

w .

Following Breiman et al.'s greedy method, we will consider
how to �nd the region R that minimizes

P
t2D

in
w
(t[A]� �(Din

w))2 +
P

t2D
out
w

(t[A]� �(Dout

w))2

jDwj
;

which we will denote by U(R).

Grid Regions

We present three classes of regions that can be directly
expressed as RDB queries. Later in this section, for
each class, we present an e�cient algorithm for computing
the optimal region of the class that minimizes the mean
squared error. To de�ne those regions, we �rst distribute
the values of B (resp. C) into NB (NC) equal-sized buck-
ets. We then divide the Euclidean plane associated with B
and C into NB �NC pixels (unit squares). For simplicity,
we assume that NB = NC = N without loss of generality
as regards our algorithms. A grid region is a set of pixels.
An x-monotone region is a grid region whose intersection
with any vertical line is undivided. A rectilinear region is
an x-monotone region such that its intersection with any
horizontal line is also undivided. We will consider the class
of x-monotone regions, the class of rectilinear regions, and
the class of rectangular (grid) regions.

Interclass Variance

Let R be a class of grid regions. For easier computation of
the region R 2 R that minimizes U(R), we introduce

V (R) = jDin

w j(�(D
in

w)��(Dw))
2+jDout

w j(�(Dout

w)��(Dw))
2
;

which we call the interclass variance. The following lemma
shows that the region R that maximizes V (R) also mini-
mizes U(R).

Lemma 1 Let R be a class of grid regions, and let R be

an element in R. The maximization of V (R) is equivalent

to the minimization of U(R).

Proof:

V (R)

= jDin
w j(�(D

in

w)� �(Dw))
2
+ jDout

w j(�(D
out

w) � �(Dw))
2

= �jDw j�(Dw)
2
+ (jDin

w j�(D
in

w)
2
+ jD

out
w j�(D

out

w)
2
)

Since �jDwj�(Dw)
2 is invariant with respect to the choice

of R, the maximization of V (R) is equivalent to the maxi-

mization of (jDin

w j�(D
in

w)
2
+ jDout

w j�(Dout

w)
2
).

U(R)

=

P
t2Dinw

(t[A]� �(Din
w))2 +

P
t2Doutw

(t[A] � �(Dout
w))2

jDw j

=

P
t2Dw

t[A]2 � (jDin
w j�(Din

w)
2
+ jD

out
w j�(Dout

w)
2
)

jDw j

Since
P

t2Dw
t[A]2 and jDwj are independent of the choice

of R, the minimization of U(R) is equivalent to the maxi-

mization of (jDin

w j�(D
in

w)
2
+jDout

w j�(Dout

w)
2
), and therefore

the maximization of V (R) is equivalent to the minimization
of U(R). 2

Region Maximizing Interclass Variance

Next we consider how to compute the region R 2 R that
maximizes V (R). Observe that V (R) is invariant if we
replace t[A] by t[A] � �(Dw) for each t 2 Dw. Thus, after
this replacement, the region maximizing V (R) still gives

the solution to the original problem. Furthermore, this
modi�cation makes �(Dw) = 0, and hence

V (R) = jDin

w j�(D
in

w)
2
+ jDout

w j�(Dout

w)
2
:

Let x denote jDin

w j, let y be
P

t2D
in
w
t[A], and let M be

jDwj. Since jD
in

w j�(D
in

w) + jDout

w j�(Dout

w) = jDwj�(Dw) =
0, we have

V (R) = y
2(
1

x
+

1

M � x
);

which we will denote by f(x; y).
For eachR 2 R, we associate a stamp point (x; y), where

x = jDin

w j and y =
P

t2D
in
w
t[A]. Consider the convex hull

of all those stamp points. Since the number of x-monotone
regions (or rectilinear regions) is more than N

N , we can-
not a�ord to calculate all the stamp points, and therefore
we simply assume their existence. The following theorem
guarantees the existence of the stamp point associated with
the region R 2 R that maximizes V (R) on the boundary of
the convex hull of all stamp points associated with regions
in R.

Theorem 1 f (x; y) = y
2(1
x
+ 1
M�x

) is convex in the region

M > x > 0; namely,

f(x1; y1) + f(x2; y2)

2
� f(

x1 + x2

2
;
y1 + y2

2
);

for arbitrary points (x1; y1) and (x2; y2) such that M >

x1; x2 > 0.

Proof: Let � denote a vector (�1; �2), and let V be
�1x + �2y. It is su�cient to show that for any �,
@
2
f(x; y)=@V 2 � 0. First let us consider the case in which

�1; �2 6= 0.

@f(x; y)

@V

=
@f(x; y)

@x
�
1

�1
+
@f(x; y)

@y
�
1

�2

= y
2(
�1

x2
+

1

(M � x)2
)
1

�1
+ 2y(

1

x
+

1

M � x
)
1

�2

Next,

@2f(x; y)

@V 2

= fy2(
2

x3
+

2

(M � x)3
)
1

�1
+ 2y(

�1

x2
+

1

(M � x)2
)
1

�2
g
1

�1

+f2y(
�1

x2
+

1

(M � x)2
)
1

�1
+ 2(

1

x
+

1

(M � x)
)
1

�2
g
1

�2

=
2

x
(
y

x�1
�

1

�2
)2 +

2

M � x
(

y

(M � x)�1
+

1

�2
)2

� 0

Next, when �1 6= 0 and �2 = 0,

@
2
f (x; y)

@V 2
= y

2(
2

x3
+

2

(M � x)3
)
1

�1
2
� 0:

We can similarly prove the case in which �1 = 0 and �2 6= 0.
2

X

Y I(right)
Q(I)

I(left)

Figure 2: Guided Branch-and-Bound Search

Hand-Probing for Scanning the Convex Hull

To search for the stamp point associated with the region R
that maximizes V (R), thanks to Theorem 1, we can focus
on scanning the convex hull of all the stamp points. To this
end we �rst present a way of touching a point on the con-
vex hull, using the "hand-probing" technique, invented by
Asano, Chen, Katoh, and Tokuyama [ACKT96] for image
segmentation and modi�ed by Fukuda, Morimoto, Mor-
ishita, and Tokuyama [FMMT96b] for extraction of the
optimized association rules. Hand probing is based on the
\touching oracle"; that is, we select a slope � and compute
the tangent point at which a line with slope � is tangent
to the convex hull. When R is the set of x-monotone re-
gions, Fukuda et al. [FMMT96b] provide an O(N2)-time
algorithm for generating the region corresponding to the
tangent point. They also provide an O(N3)-time algo-
rithm when R is the set of rectangular regions. For the
case in which R is the set of rectilinear regions, Yoda et al.
[YFM+97] present an O(N 3)-time algorithm.

By using the hand-probing technique repeatedly, we can
scan all the points on the hull and �nd the optimal point
associated with the region that maximizes V (R). However,
the number of points could be more than NN if we consider
x-monotone regions or rectilinear regions, and therefore in
the worst case we may need to try NN touching oracles in
order to �nd the optimal stamp point, which is intractable
in practice. To avoid searching for unnecessary points, we
now introduce a guided branch-and-bound strategy.

Guided Branch-and-Bound Search

While searching for the optimal region, we maintain the
current maximum Vmax corresponding to the points exam-
ined so far. Suppose we have examined two tangent points,
say I(left) and I(right), and consider the interval I =
[I(left); I(right)] in Figure 2. Let Q(I) = (xQ(I); yQ(I)) be
the point of intersection of the two tangent lines that are
used to compute I(left) and I(right). We compute the in-
terclass variance value of Q(I), f(Q(I)) = f(xQ(I); yQ(I)).

Corollary 1 For any point Q0 = (x0; y0) inside the trian-

gle I(left), I(right), and Q(I),

f(x0; y0) � maxff(xQ(I); yQ(I)); Vmaxg

Proof: Immediate from Theorem 1. 2

This corollary gives an upper bound between I(left)
and I(rignt). Hence, we can �nd the optimal region ef-
fectively by the hand probing together with a branch and
bound strategy guided by the values f(Q(I)). We examine
the subinterval with the maximum value of f(Q(I)) �rst.
In addition, subintervals whose f(Q(I)) is less than Vmax

are pruned away. During the process, Vmax is monoton-
ically increased while each f(Q(I)) is monotonically de-
creased. Most of subintervals are expected to be pruned
away during the computation, and therefore the number of
touching oracles is expected to be O(log n), where n is the
number of points on the convex hull.

Since both of the number of x-monotone regions and
the number of rectilinear regions are bounded by N

2N ,
the expected number of touching oracles is O(N logN).
On the other hand, the number of rectangular regions is
bounded by N4, and hence the number of touching oracles
in this case is expected to be O(logN). Recall that the
time complexities of performing one touching oracle for x-
monotone regions, rectilinear regions, and rectangular re-
gions are O(N2), O(N3), and O(N 3), respectively. Thus
we can experimentally compute the region minimizing the
mean squared error in time proportional to O(N3 logN),
O(N4 logN), and O(N3 logN) for x-monotone regions,
rectilinear regions, and rectangular regions, respectively.

4 Experimental Results

4.1 Prediction Accuracy

Ten fold Cross-Validation Test

We performed the following ten-fold cross-validation test:

� First, randomly divide the original dataset into ten
subsets of almost equal sizes.

� Take the union of nine subsets and use it as the train-
ing dataset to generate a regression tree that splits
data by guillotine cuts, x-monotone regions, rectilin-
ear regions, or rectangular regions.

� Then, use the remaining subset as the test dataset to
evaluate the regression tree, and compute the mean
squared error against the test dataset. The mean
squared error varies depending on the sample dataset.
In order to compare the mean squared errors of di�er-
ent datasets, in what follows, we use a \normalized"
version called the relative mean squared error of a re-
gression tree, which is de�ned as the mean squared
error of the tree divided by the variance of the test
data.

� Repeat the above steps ten times, and then calculate
the average of all the relative mean squared errors.

How to Avoid Over�tting

From a training dataset, we can generate large regression
trees by expanding leaves as much as we want. Larger
regression trees can reduce the mean squared error in
the training dataset but are likely to over�t the training

dataset, giving a higher mean squared error against the
test dataset. To avoid such an over�tting, we need some
criteria for when to stop expanding a regression tree.

Let A denote the objective numeric attribute. Suppose
that the set of tuples Dw at same node, say w, is divided
into Din

w and D
out

w by splitting it with region R. In Sec-
tion 3, we present an algorithm for computing the optimal
region R that minimizes the following mean squared error
after the partition by R:
P

t2D
in
w
(t[A]� �(Din

w))2 +
P

t2D
out
w

(t[A]� �(Dout

w))2

jDwj
� � � (�)

Before the partition by R, the mean squared error is
P

t2Dw
(t[A] � �(Dw))

2

jDwj
� � � (��)

The splitting by R is e�ective if the di�erence of the above
two mean squared errors, (��) � (�), is large, because the
splitting contributes to the reduction of the mean squared
error of the regression tree. Let us call the di�erence the
pro�t of the splitting with region R. If the pro�t is small,
the partition by R is not e�ective for expanding the node
and should therefore be avoided. To this end, we provide a
threshold for the pro�t of a region splitting, and we do not
expand the node w if we cannot �nd any region splitting
whose pro�t is less than the threshold. Actually we used
the following threshold:

� �

P
t2D

(t[A] � �(D))2

jDj
;

where D denotes the set of all the tuples in the training
dataset, and � is a special parameter called a pruning pa-

rameter. This threshold is equivalent to the AID criteria
mentioned in [BFOS84]. The choice of pruning parame-
ter � strongly a�ects the mean squared error against the
test data. A larger pruning parameter is more likely to
prune subtrees and hence to produce smaller regression
trees, while a smaller pruning parameter generates a larger
regression tree that might over�t the training data. We
need to control the pruning parameter nicely to yield a
better regression tree with a smaller mean squared error.
We will discuss this issue later in more detail.

Pixel Density

The average number of tuples in each pixel, which we call
the pixel density, tends to a�ect the mean squared error.
Using a lower pixel density is likely to make regression
trees over�t the training dataset, while a coarse grid with
a higher pixel density often fails to �nd various-shaped
regions. We empirically found that a pixel density ranging
from 5 to 10 gives a lower mean squared error for test
datasets, and we therefore use a pixel density of 5 or 10.

In the process of generating regression trees, the number
of tuples becomes smaller at nodes lower in the tree. In
order to guarantee a pixel density of 5 or 10, we are forced
to use a grid of, say 2� 2, which is too coarse to generate
interesting regions. If we have to use a coarse grid of less
than 5 � 5, we employ one-dimensional (range) splitting
instead.

Dataset #tuples #attrs
add10 9792 10
abalone 4177 8
kin-8fh 8192 8
kin-8fm 8192 8

kin-8nh 8192 8
kin-8nm 8192 8
pumadyn-8fh 8192 8
pumadyn-8fm 8192 8
pumadyn-8nh 8192 8
pumadyn-8nm 8192 8

Table 2: Dataset Summary

Test Datasets

We used several public datasets, summarized in Table 2,
which were acquired from the following WWW site:

http://www.cs.utoronto.ca/~ delve/data/datasets.html.

We chose these datasets because almost all the at-
tributes are numeric. As regions for splitting the datasets,
we used x-monotone regions, rectilinear regions, and rect-
angular regions, and we assigned a value of 5 or 10 for the
pixel density.

To create a better regression tree with a smaller mean
squared error, we generate a number of regressions for var-
ious values of the pruning parameter. For instance, let
us consider the \add10" dataset. Figure 3 shows how
the relative mean squared error changes according to the
value of the pruning parameter. The graph for \Rectilinear
(dens5)" shows the relative mean squared errors of regres-
sion trees with rectilinear regions for a pixel density of 5,
and we see that the relative mean squared error is small-
est when the pruning parameter is 0:0002. Observe that
the value increases for pruning parameters less than 0:0002,
which indicates that the regression tree becomes larger and
over�ts the training data. Similarly, for x-monotone region
splitting, rectangular region splitting, and guillotine cut
splitting, we can �nd the respective regression tree with
the smallest relative mean squared error. Observe that the
use of rectilinear regions is the most e�ective.

For the other datasets, we performed the same analysis
(See Figures 4-12). Table 3 summarizes the results, show-
ing the pair of the smallest relative mean squared error
and the average number of leaves for each splitting. In the
table, we underline the smallest relative mean squared er-
ror for four types of splitting. Note that rectilinear region
splitting with a pixel density of 5 is always better than the
others, and tends to yield smaller regression trees.

4.2 Performance Results

The performance in constructing regression trees depends
on the execution time needed to compute the optimal re-
gions for splitting data. Thus the cost of computing one
optimal region gives us an idea of the overall performance
in generating one regression tree.

Computing One Optimal Region

We generated our test data, in the form of an N �N grid,
as follows: We �rst made random numbers uniformly dis-

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r

Pruning parameter

add10

X-monotone (dens10)
Rectilinear (dens5)

Rectangular (dens5)
Guillotine

Figure 3: Accuracy Results for \add10"

0.5

0.55

0.6

0.65

0.7

0.75

0 0.002 0.004 0.006 0.008 0.01 0.012

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r

Pruning parameter

abalone

X-monotone (dens10)
Rectilinear (dens5)

Rectangular (dens10)
Guillotine

Figure 4: Accuracy Results for \abalone"

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r

Pruning parameter

kin-8fh

X-monotone (dens10)
Rectilinear (dens5)

Rectangular (dens10)
Guillotine

Figure 5: Accuracy Results for \kin-8fh"

X-monotone Rectilinear Rectangular Guillotine
Dataset Err Size Err Size Err Size Err Size

add10 1.41e-1 132.4 1.23e-1 120.9 1.56e-1 222.8 1.85e-1 540.2
abalone 5.21e-1 10.0 5.15e-1 8.7 5.34e-1 10.2 5.39e-1 38.9
kin-8fh 4.47e-1 34.1 4.33e-1 59.7 4.59e-1 69.9 4.79e-1 128.3
kin-8fm 2.25e-1 110.3 1.97e-1 138.3 2.57e-1 162.7 2.49e-1 919.9
kin-8nh 6.49e-1 29.9 6.18e-1 25.8 6.19e-1 37.7 6.55e-1 88.4
kin-8nm 4.94e-1 44.9 4.49e-1 92.2 4.78e-1 59.3 5.41e-1 203.6
pumadyn-8fh 4.12e-1 8.0 4.02e-1 8.0 4.09e-1 19.9 4.10e-1 26.2
pumadyn-8fm 6.04e-2 15.7 5.95e-2 23.3 6.53e-2 51.4 6.32e-2 153.9
pumadyn-8nh 3.47e-1 8.0 3.37e-1 8.0 3.53e-1 26.7 3.55e-1 44.1
pumadyn-8nm 5.30e-2 28.0 4.96e-2 38.2 5.50e-2 100.1 5.35e-2 185.0

Table 3: Summary of Cross-Validation Results

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r

Pruning parameter

kin-8fm

X-monotone (dens10)
Rectilinear (dens5)

Rectangular (dens5)
Guillotine

Figure 6: Accuracy Results for \kin-8fm"

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r

Pruning parameter

kin-8nh

X-monotone (dens10)
Rectilinear (dens10)

Rectangular (dens10)
Guillotine

Figure 7: Accuracy Results for \kin-8nh"

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0 0.001 0.002 0.003 0.004 0.005 0.006

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r

Pruning parameter

kin-8nm

X-monotone (dens10)
Rectilinear (dens5)

Rectangular (dens5)
Guillotine

Figure 8: Accuracy Results for \kin-8nm"

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r

Pruning parameter

pumadyn-8fh

X-monotone (dens10)
Rectilinear (dens5)

Rectangular (dens10)
Guillotine

Figure 9: Accuracy Results for \pumadyn-8fh"

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r

Pruning parameter

pumadyn-8fm

X-monotone (dens5)
Rectilinear (dens10)
Rectangular (dens5)

Guillotine

Figure 10: Accuracy Results for \pumadyn-8fm"

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r

Pruning parameter

pumadyn-8nh

X-monotone (dens10)
Rectilinear (dens5)

Rectangular (dens5)
Guillotine

Figure 11: Accuracy Results for \pumadyn-8nh"

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012

R
el

at
iv

e
m

ea
n

sq
ua

re
d

er
ro

r

Pruning parameter

pumadyn-8nm

X-monotone (dens5)
Rectilinear (dens5)

Rectangular (dens5)
Guillotine

Figure 12: Accuracy Results for \pumadyn-8nm"

X-monotone Rectilinear Rectangular
#pixel time #t time #t time #t

102 0.08 26 0.04 21 0.01 18
202 0.36 28 0.34 27 0.05 26

302 0.89 31 1.35 32 0.16 27
402 1.89 35 3.47 32 0.37 29
502 2.69 32 7.01 32 0.75 31

Table 4: Time for Computing an Optimal Region(1)

0

50

100

150

200

250

300

40^2 80^2 120^2 160^2 200^2 240^2

T
im

e
[s

ec
]

Resolution

X-monotone
Rectangular

Rectilinear

Figure 13: Time for Computing an Optimal Region(2)

tributed in [N2
; 2N2] and assigned them to the number of

tuples in each pixel. We then assigned 1; : : : ; N2 to the
sum of the target values in a pixel, from a corner pixel to
the central one, proceeding in a spiral fashion. These test
data were generated so that the number of points on the
convex hull increased sub-linearly to N , the square root of
the number of pixels. We examined the CPU time taken to
compute the optimal regions and the number of touching
oracles needed to �nd the regions. We performed all exper-
iments on an IBM RS/6000 workstation with a 112 MHz
PowerPC 604 chip and 512 MB of main memory, running
under the AIX 4.1 operating system.

Table 4 shows the time (sec.) and number of touch-
ing oracles, denoted \#t", that were required in the
guided branch-and-bound algorithm to �nd the optimal
x-monotone (resp. rectilinear, or rectangular) region that
minimizes the mean squared error. It shows that the num-
ber of touching oracles increases very slowly thanks to the
guided branch-and-bound algorithm. Figure 13 con�rms
that the CPU time follows our scale estimation. Although
the asymptotic time complexity for computing the optimal
x-monotone region is better than that for computing the
optimal rectilinear region, in practice the optimal rectilin-
ear region is computed faster because the constant factor
is smaller.

At the root of a regression tree, we may need a large
number of pixels to guarantee the speci�ed pixel density.
The number of tuples, however, decreases in lower parts of
the tree, and the number of pixels soon becomes less than
30 � 30 for most datasets; hence computing the optimal
rectilinear region is not costly according to Table 4.

#tuples X-monotone Rectilinear
2000 849 341
4000 2172 945
6000 3819 1620
8000 5477 2304

Table 5: Tree Construction Time (1)

#attributes X-monotone Rectilinear

4 901 599
6 1897 1028
8 3416 1430
10 5477 2304

Table 6: Tree Construction Time (2)

Computing One Regression Tree

The next experiment examines the overall performance in
tree construction. At each node of a regression tree, we �rst
prepare the grid, and then compute the optimal region.
The grid preparation is not expensive, because it can be
done by scanning all the tuples at a node just once. The
problem is that we have to calculate the optimal region
for all pairs (permutations for x-monotone regions) of two
distinct numeric attributes. Thus the number of attributes
dramatically a�ects the overall performance.

Table 5 compares the time (sec.) taken to construct
trees by using datasets with di�erent numbers of tuples.
We randomly selected tuples from the \add10" dataset to
generate datasets having di�erent numbers of tuples, and
used those datasets to construct regression trees by per-
forming region-splitting with a pixel density of 5. We set
the pruning parameter � to 0:0002 because, as we have
seen in Figure 3, the value yields the tree with the smallest
mean squared error. The result shows that tree construc-
tion time is a little more than our scale estimation, because
trees from larger datasets become bigger.

Table 6, on the other hand, compares the performance
using datasets with di�erent numbers of attributes. We
used 8000 tuples from the \add10" dataset, and con-
structed trees using the �rst N numerical attributes. Ob-
serve that the time complexity is almost linear in the square
of the number of attributes.

5 Discussion

Experiments using diverse datasets con�rmed that region-
splitting trees are more accurate than conventional ones.
However, in order to use the region-splittings, we have to
spend additional computation time which is proportional
to the number of numeric conditional attributes. In the
experiments, region-splitting trees reduced error ratio by
around 10%. One case of which achieves dramatic 34%
reduction. Those reductions show substantial capability
of our method. If we compare the error ratio of compact
trees which are small enough to be appreciated, the error
reduction is much more signi�cant as you can see in Figures
3 to 12. In many applications, the improvements will be
worth the computational cost if there are not too many
numeric attributes. Another important advantage is size

of the trees. The size is much smaller than conventional
ones. It makes easy to grasp rules which a�ect values of
the target attribute. Furthermore, we can recognize many
non-linear correlations among conditional attributes which
could not be found without region-splittings.

References
[ACKT96] Tetsuo Asano, Danny Chen, Naoki Katoh, and Takeshi

Tokuyama. Polynomial-time solutions to image seg-
mentations. In Proc. 7th ACM-SIAM Symposium on

Discrete Algorithms, pages 104{113, 1996.

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arum Swami.
Mining association rules between sets of items in large
databases. In Proceedings of the ACM SIGMOD

Conference on Management of Data, pages 207{216,
May 1993.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast al-
gorithms for mining association rules. In Proceedings

of the 20th VLDB Conference, pages 487{499, 1994.

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen, and
C. J. Stone. Classi�cation and Regression Trees.
Wadsworth, 1984.

[FMMT96a] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Mor-
ishita, and Takeshi Tokuyama. Mining optimized as-
sociation rules for numeric attributes. In Proceedings

of the Fifteenth ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pages
182{191, June 1996.

[FMMT96b] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Mor-
ishita, and Takeshi Tokuyama. Data mining using
two-dimensional optimized association rules: Scheme,
algorithms, and visualization. In Proceedings of the

ACM SIGMOD Conference on Management of Data,
pages 13{23, June 1996.

[FMMT96c] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Mor-
ishita, and Takeshi Tokuyama. Constructing e�cient
decision trees by using optimized association rules. In
Proceedings of the 22nd VLDB Conference, pages
146{155, 1996.

[HF95] Jiawei Han and Yongjian Fu. Discovery of multiple-
level association rules from large databases. In Pro-

ceedings of the 21st VLDB Conference, pages 420{
431, 1995.

[MAR96] Manish Mehta, Rakesh Agrawal, and Jorma Rissanen.
Sliq: A fast scalable classi�er for data mining. In Pro-

ceedings of the Fifth International Conference on Ex-

tending Database Technology, 1996.

[PCY95] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An
e�ective hash-based algorithm for mining association
rules. In Proceedings of the ACM SIGMOD Confer-

ence on Management of Data, pages 175{186, May
1995.

[PS91] G. Piatetsky-Shapiro. Discovery, analysis, and pre-
sentation of strong rules. In Knowledge Discovery in

Databases, pages 229{248, 1991.

[PSF91] G. Piatetsky-Shapiro and W. J. Frawley, editors.
Knowledge Discovery in Databases. AAAI Press,
1991.

[Qui86] J. Ross Quinlan. Induction of decision trees. Machine

Learning, 1:81{106, 1986.

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learn-

ing. Morgan Kaufmann, 1993.

[SA96] Ramakrishnan Srikant and Rakesh Agrawal. Mining
quantitative association rules in large relational tables.
In Proceedings of the ACM SIGMOD Conference on

Management of Data, June 1996.

[YFM+97] Kunikazu Yoda, Takeshi Fukuda, Yasuhiko Morimoto,
Shinichi Morishita, and Takeshi Tokuyama. Comput-
ing optimized rectilinear regions for association rules.
In Proceedings of KDD'97, August 1997.

