
Data Mining Using Two-Dimensional Optimized

Association Rules: Scheme, Algorithms, and Visualization

Takeshi Fukuda Yasuhiko Morimoto Shinichi Morishita

IBM Tokyo Research Laboratory IBM Tokyo Research Laboratory IBM Tokyo Research Laboratory

fukudat@trl.ibm. co.jp morimoto@trl.ibm. co.jp morisitatltrl.ibm.co. jp

Takeshi Tokuyama

IBM Tokyo Research Laboratory

ttoku@trl.ibm.co.jp

Abstract

We discuss data mining based on association rules for two

numeric attributes and one Boolean attribute. For example,

in a database of bank customers, “Age” and “Balance”

are two numeric attributes, and “CardLoan” is a Boolean

attribute. Taking the pair (Age, Balance) as a point in two-

dimensional space, we consider an association rule of the

form

((Age, Balance) c P) * (CardLoan = Yes),

which implies that bank customers whose ages and balances

fall in a planar region P tend to use card loan with a high

probability. We consider two classes of regions, rectangles

and adrmssible (i.e. connected and z-monotone) regions. For

each class, we propose efficient algorithms for computing the

regions that give optimal association rules for gain, support,

and confidence, respectively. We have implemented the

algorithms for admissible regions, and constructed a system

for visualizing the rules.

1 Introduction

Recent progress in technologies for data input through
such media as bar-coded labels, credit cards, OCRS,
and cash dispensers, have made it easier for finance
and retail organizations to collect massive amounts
of data and to store them on disk at a low cost.
Such organizations are interested in extracting from
these huge databases unknown information that inspires
new marketing strategies. Current database systems
are their primary means of realizing this aim, but in
database and AI communities, there has been a growing
interest in efficient discovery of interesting rules, which
is beyond the power of current database functions
[AGI+92, AIS93a, AIS93b, AS94, BFOS84, HCC92,
NH94a, PCY95, PS91, PSF91, Qui86, Qui93, SAD+93].

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and ifs date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
andlor a fee.

Association Rules

Given a database universal relation, we consider the
association rule that if a tuple meets a condition Cl,
then it also satisfies another condition Cz with a
probability (called confidence in this paper). We will
denote such an association rule (or a rule, for short)
between the presumptive condition (71 and the objective
condition C2 by Cl + C2 1.

Agrawal, Imielinski, and Swami [AIS93b] investigated
how to find all rules whose confidences are greater than
a specified minimum threshold, such as 50’Yo. They
focus on rules with conditions that are conjunctions of
(A= yes), where A is a Boolean attribute, and present
an efficient algorithm. They have applied the algorithm
to basket-clata-type retail transactions in order to derive
interesting associations between items, such as

(~i,zza = yes) A(~oke = yes) + (potato= yes).

Improved versions of the algorithm have also been
reported [AS94, PCY95].

In addition to Boolean attributes, databases in the
real world usually have numeric attributes such as
age and the balance of account in a database of
bank customers. Thus, it is also important to find
association rules for numeric attributes. In a companion
paper [F MMT96a], we considered the problem of finding
simple rules of the form

(Balance E [VI, VZ]) + (Car-dLoar2 = yes) (*)

which expresses that customers whose balances fall in
the range between VI and Vz are likely to use card
loan. If the confidence of this rule exceeds a given
threshold O (say, 10%), the range (i.e. interval) [VI, V2]
is called a conjident r-ange of the numeric attribute
value “Balance” with respect to the Boolean attribute
“CardLoan.” Among a lot of confident ranges, we want
to obtain one with high suppori (the number of tuples in
the range). Fukuda et al. [F MMT96a] introduced some

optimization criteria for finding optimized ranges, that

1We use the symbol %“ in order to distinguish the relation-
ship from logical implication, which is usually denoted by “-”

SIGMOD ’96 6/96 Montreal, Canada
Q 1996 ACM 0-89791 -794-4/96/0006, .,$3.50

13

effectively represent interrelation between a numeric
attribute and a Boolean one.

Two-Dimensional Association Rules

In the real world, binary associations between two
attributes are not enough to describe the characteristics
of a data set, and therefore, we often want to find a rule
for more than two attributes.

The main aim of this paper is to generate rules (which
we call two-dimensional assoctatton rules) that repre-
sent the dependence on a pair of numeric attributes of
the probability that an objective condition (correspond-
ing to a Boolean attribute) will be met.

For each tuple t, let t[A] and t[l?] be its values for
two numeric attributes; for example, t [A] = “Age of
a customer t“ and t[l?]= “Balance of t“. Then, t is
mapped to a point (t [A], t [1?]) in an Euclidean plane E2.

For a region P in E2, we say a tuple t meets condition
“(Age, Balance) E P“ if t is mapped to a point in P.

We want to find a rule of the form ((A, B) E P) + C

such as

((Age, Balance) G 1?) + (CardLoan = yes).

In practice, we consider a huge database containing
millions of tuples, and hence we have to handle millions
of points, which may OCCUPY much more space than

the main memory. To avoid dealing with such a large

number of points, we discretize the problem; that is, we

distribute the values for each numeric attribute into IV

equal-sized buckets. We divide the Euclidean plane into

N x N pixels (unit squares), and we map each tuple t

to the pixel cent aining the point (t [A], t [B]). We use
a union of pixels as the region of a two-dimensional
association rule.

The probability that the tuples in a pixel (respec-
tively, a region) satisfy the objective condition C is
called the confidence of the pixel (region). We would
like to find a conjident region whose confidence is above
some threshold.

The shape of region P is important for obtaining a
good association rule. For instance, if we gather all
the pixels whose confidence is above some threshold,
and define P to be the union of these pixels, then P

is a confident region with (usually) a high support.
A query system of this type is proposed by Keim et
al. [KKS94]. However, such a region P may consist

of many connected components, and often create an
association rule that is very difficult to characterize, and
hence hard to see the validity. Therefore, in order to
obtain a rule that can be stated briefly or characterized
via visualization, it is required that P should belong to
a class of regions that have nice geometric properties.

Main Results

The problem of extracting a confident region resembles
that of image segmentation in computer vision. Al-

Figure 1: Admissible Region

though there are many known algorithms for image seg-
mentation, we need one that outputs an image region
that generates a good (or, to be precise, an optimized)
association rule.

We consider two classes of geometric regions: rectan-
gular regions, and admissible regions, which are con-
nected x-monotone regtons. A region is called x-
monotone if its intersection with any vertical line is
undivided. Figure 1 shows an instance of admissible
regions.

We generalize an algorithm introduced by Asano et
al. [AC KT96], which segments an object image from the
background in a gray image, to our color-image case,
and obtain a linear-time algorithm for computing the
focused regton, which is the x-monotone region that
maximizes the gatn (see section 2 for a definition).
Although this algorithm uses sophisticated dynamic
programming with fast mat;ix searching [AK M+87], we
have confirmed experimentally that our implementation
is fast not only in theory but also in practice. If
we consider rectangular regions instead of x-monotone
regions, the computation time for the optimal gain rule
is increased to O(nl 5,, where n is the number of pixels
in the grid.

Next, we give efficient approximation algorithms
for generating optimized support rules and optimized
confidence rules (defined in later sections), through the
use of focused regions.

Visualization

It is natural to visualize the region of a two-dimensional
association rule ((A, B) E P) + C. Let us regard the
region P as a color image on a grid G as follows: Let
Ui,j and Wi,j denote the numbers of tuples and tuples
satisfying the objective condition C’ in the (i, j)-th pixel
G(i, j), respectively. The pixel G(i, j) has a color vector

(w, , Ui,, –v$,J, O) in RGB space. This means that its red
level is Vi,j, its green level is ut)~ – vt,j, and its blue level
is O. Hence, the brightness level is ut,j, which represents
the number of tuples that fall within the pixel. The
confidence of each pixel is represented by its color; thus,

14

Figure 2: Visualization system

a redder pixel has a higher confidence.

We construct a visualization system for our two-
dimensional association rules by reforming the color
image introduced above, transforming it to make the
rules easier for humans to grasp visually. We have
tested our system, together with the functions given
in our companion paper [F MMT96a], on some test
database, and discovered several new simple rules, some
of which seem to be of potential value to users in
strategy planning.

The database has about thirty numeric attributes
and about one hundred Boolean attributes. Suppose
that we select two numerical attributes, “Age” and
“Balance,” and also a Boolean attribute, “Card Loan
Delay,” for example. These attributes represent the
ages of customers, the balances of their accounts, and
whether they have delayed payment of their credit card
charges, respectively. In order to characterize unreliable
customers who have delayed payment, we consider the
rule

((.4ge, Baiance) E P) * (CarctLoanDelay = yes),

and find an optimized region of P. We divide data into
sets of 20 x 20 pixels. Our visualization system shows
an optimized region in those pixels as in Figure 2. The
data has an average confidence of 3.5190, which means

that 3.51% of customers have delayed their credit card
payments at one time or another.

By pushing the Query button, we can see a focused
region enclosed in thick lines. The confidence and the
support (the percentage of tuples in the region) can be
found at the bottom of the window. By moving the
slider, we can control the trade-off between the support
and the confidence: if we move the slider to the left,
the support increases while the confidence decreases.
In response to such a movement, the visualization
system recomputes the region together with its support
and confidence. Our system is so fast that one can
continuously move the slider and see how the region
changes, as if one were watching a motion picture.

In Figure 2, we can find a region with 14.1% of
support and 12.8’%0of confidence, which is much higher
than the average confidence. The shape of the region
tells us the characteristics of unreliable customers.
As a result, we can say “Unreliable customers, who
have delayed payment of their card charges, can be
characterized as relatively young people whose balance
is low.”

2 Preliminaries

In this paper we consider association rules, which are
stochastic relations between some conditions on tuples
in a database. We consider some primitive conditions,
and use them to describe more complicated conditions.
For a Boolean attribute A, A = yes and A = no are
primitive conditions. Our typical primitive conditions
on numeric attributes A and B are A = v, A G 1, and
(A, B) E P, where v is a value and 1 is a range in the
domain of A, and P is a region of the product space of
domains of A and B.

Let Cl and C2 be conditions on tuples. An association
rule (or a rule for short) has the form C’l + Cg. C2
is called an objecitve condition, and Cl is called a
presumptive condttion.

The support of condition C is defined as the per-
centage of tuples that meet condition C, and is de-
noted by support(C). In this paper, we normally de-
note the “number of tuples” that meet condition C
by support(C) rather than “percentage,” since we do
not want to declare the base of the percentage each
time. The confidence of a rule Cl + C2 is defined
as support (C1AC2)/support(C1), which is denoted by
Conf(cl * C2).

There are several types of association rules for
attributes. Our first example is a rule where the
presumptive condition is a primitive condition on a
Boolean attribute.

Example 2.1 Consider a relation of basket-type retail
transactions. Each attribute of the relation is a Boolean
one whose domain is {yes, no}, and represents an item,

15

such as Coke or Pizza.

(Coke = yes)= (Pizza= yes)

is an association rule. I

The second example is a rule, which we call a one-
dimenszonal association rule, where the presumptive
condition is on a numerical attribute.

Example 2.2 Consider a bank’s data on customers.
Each tuple contains the balance of a customer at the
bank and services, (card loan or automatic withdrawal,
say) for the customer. Suppose that 5070 of customers
whose balance is between 104 and 105 use credit card
loans; then, we have the following rule, whose confidence
is 50Yo:

(Balance E [104, 105]) ~ (CardLoan = yes).

I

The third example is a rule where the presumptive
condition is a condition on two numerical attributes:

Example 2.3 In a bank’s data on customers, we
consider another numeric attribute, Age. Consider the
following rule:

{(Balance c [104, 105]) A (Age G [40, 50])}

+ (CardLoan = yes).

I

The presumptive condition of the above association
rule can be rewritten as a primitive condition
(Balance, Age) c P, where P is a rectangular region
[104, 105] x [40, 50] in the plane, which is the product
space of the domains of Balance and Age. We call rules
of this type two-dimensional association rules, in which
P is not necessarily a rectangle (we will discuss this
point later in detail).

3 One-Dimensional Association Rules

Optimized Ranges

It is important to mine association rules whose confi-
dence is high, and whose support is sufficiently large. In
this subsection, we define optimization criteria for the
range 1 in a one-dimensional association rule (A E 1) +

C, where A is a fixed numeric attribute and C is a fixed
objective condition. For simplicity, we write support(l)
for support(A E 1), and hit(l)for suppori((A E l)AC),

which are called the support and hit support of I, respec-
tively. For a tuple t, we define t[A] to be the value of A

at t.A tuple is called a success tuple if the condition C
holds for it.

Since there are often too many tuples in a large
database to be accommodated in main memory, we

usually compress the data into N buckets B1, B2, . . . BN,

by using an ordered bucketing so that for each t ~ B,

and t’E Bj where i < j, t[A] < t’[A]. The number of
tuples in Bi is denoted Ui, and the number of success
tuples in B$ is W,. It is desirable that the buckets should
be (almost) equal-sized; that is to say, tuples should be
uniformly distributed into buckets. A fast method of
performing such a bucketing is given in our companion
paper [FMMT96a].

From now on, we assume that we have equal-sized
bucketing, and we only consider ranges each of which
corresponds to a union of contiguously indexed buckets.
For simplicity, we denote the range corresponding to
B, U B,+ IU, ..., UBt by [s, t]. For a range 1 = [s, t],
support(l) = ~~=$ Ui and hit(l) = ~~=, v, by
definition. A rule is confident if its confidence is not less
than a given confidence threshold $. A range generating
a confident rule is called a confident range. A rule is
ample if its support is not less than a given support
threshold Z. A range generating an ample rule is called
an ample range.

There can be many confident ranges, and we want to
compute characteristic ones that optimize some criteria.
Among them, let us consider the opttmtzed gam range,
which maximizes gaine (1) = hit(l) – 0 x support(I),

and the optimized support range, which is the confident
range that maximizes support. We often omit subscript
9 if we fix the threshold.

For example, let us consider the rule

(Balance E 1) + (CardLoan = yes) (y)

and suppose that the credit card loan system pays if

100070 of customers use credit card loans. Then, the

optimized gain range is the range of customers (with

respect to the balance) that maximizes the bank’s profit

from the credit card loan system. On the other hand,

the optimized support range is the largest range of

customers for which the bank does not lose money on

the credit card loan system.

In Figure 3, l(gain) and I(support) are the optimized
gain and the optimized support ranges in which the
confidence threshold is 0.4. l(con~idence) is called the
optimized confidence range, which is the ample range
that maximizes the confidence (in this example, the
support threshold is 200).

In this paper, we consider the optimized gain range,
give a linear (O(N)) time algorithm for computing it,
and generalize it to two-dimensional cases.

3.1 From “Programming Pearls”

In the “Programming Pearls [Ben84]” column of CACM,
J. Bentley presented
importance of efficient
The problem is:

a problem for demonstrating
algorithms in program design.

16

~ 50 50 50 50 50 50 50 50 50 50 50 50 50

v 12 16 30 26 13 21 15 33 13 9 11 22 12

X(-confidence)

Figure 3: Optimized Ranges

“Given a list X of .V real numbers, compute
the maximum sum found in any contiguous
subvector of it.”

This problem is equivalent to our problem of computing
the optimized gain range. Given a confidence threshold
d, we define a list X so that X(i) = vi – t?x u,. Then,
.Y[s, f] is the solution of the problem if and only if [s, t]
is the optimized gain range.

Bentley introduced four algorithms, whose time com-
plexities are 0(N3), 0(.V2), O(Nlog N), and O(N),
respectively. The linear time algorithm (Kadane’s algo-
rithm) scans the data with respect
For each i,

A4az(i) = max, $i X([S, i]), and
.!~a.r(< i) = max$~~~~ X([s, t]).

Then, Jfaz(s N) is the answer.
relations are easy to see:

to the array ind~x.

The following two

IMcm(i + 1) = mu{ O,lfaz(i)} + X(i + 1), and
kfaz(~ i + 1) = max{A4a.r(i + l), fkfaz(~ i)}.

Thus, a simple dynamic programming gives an O(N)
time solution.

Therefore, we have the following:

Theorem 3.1 The opttmtzed gain range can be found

tn O(N) ttme.

4 Two-Dimensional Association Rules

Problem formulation

Let us consider two numeric attributes A and B, and
an objective condition C. We distribute the values of A

and B into NA and NB equal-sized buckets, respectively.
Let us consider a two-dimensional NA x NB pixel-grid
G, which consists of NA x NE unit squares called ptxels.
G(i, j) is the (i, j)-th pixel, where i and j are called the
row number and column number, respectively. The j-
th column G(*, j) of G is its subset consisting of all
pixels whose column numbers are j. Geometrically,
a column is a vertical stripe. We use the notation
n = NA x IVB. In our typical applications, the ranges
of NA and NE are from 20 to 500, and thus n is

between 400 and 250000. For simplicity, we assume that
N~ = NB = N from now on, although this assumption
is not essential. For a set,of pixels, the union of pixels in
it forms a planar region, which we call a ptxei reg~on. A
pixel region is x-monotone if its intersection with each
column is undivided (thus, a vertical range) or empty. A
connected and x-monotone region is called an admtsstble

regton.

For each tuple t, t[A] and t[B] are values of the
numeric attributes A and B at t. If t[A] is in the i-th
bucket and t[l?]is in the j-th bucket in the respective
bucketing, we define f(t) = G(i, j). Then, we have a
mapping ~ from the set of all tuples to the grid G.

For each pixel G(i, j), u~,j is the number of tu-
p~es mapped to G(i, j), and V,,J is the number of suc-
cess tuples mapped to G(i, j). Given a region P,

define support(P) = ~~(i,J)~P U,,j. and hit(P) =

~G(i,j)~Pv~j Given a threshold 0, we define g(8)ij =

‘ll~,j – Oui,j, and gain(P) = hit(P) – 0 x support(P) =

~G(i,j)~Pg(Ol~,j We want to find the two-dim ens~onal

optzmtzed gatn rule (f(t) E P) ~ C, where P is the

admissible region that maximizes gain(P). The region
is called an opttmued gatn admzsstble regton.

lNote that, there may be more than one optimized gain
admissible regions associated with a given threshold O.
In such a case, we compute both the optimized gain
admissible regions with the maximum support and the
minimum support.

As in the case of ranges, we call a region confident

(resp. ample) if its confidence (resp. support) is at
least a given threshold value. Similarly, we define an
optzmtzed support admissible regton, which is the confi-
dent and admissible region that maximizes support, and
optimued confidence admwwble regzon, which is the am-
ple and admissible region that maximizes confidence.

Instead of admissible regions, the rectangular subre-
gion W of G that maximizes gain(W) is called the op-

t~mized gain (support, confidence) rectangle.

Note that, if we want to find the connected pixel re-
gion with the maximum gain, rather than an admissible
region or rectangle, the problem becomes N P-hard, in
line with a similar argument to that by Garey and John-
son [GJ77] for the grid Steiner tree problem.

Algorithms for computing optimized rectangles

There are 0(N4) rectangular subregions of G. Thus,
a naive algorithm computes the gain of each of these
O(N4) rectangles and outputs the one with the max-
imum gain. The time complexity of this algorithm is
0(N5) = 0(n2 5), which is too expensive. It can be
easily reduced to to O(nl 5, by using Theorem 3.1, as
follows:

We choose a pair r < T’ of rows in G, and consider
only rectangles whose horizontal edges are on these
rows. For each column index j, we compute the sum

17

x(j) = ~~~r g(~)i,j, and compute the maximum sum

in any contiguous subvector of the list X() (the problem

in Programming Pearls). Thus, we obtain the rectangle

with the maximum gain for this special case in O(N)

time. Since there are 0(N2) candidate pairs of rows, the

time complexity of the algorithm is 0(iV3) = 0(n15).

‘The same time complexity can be found in Fischer et

al. [FHLL93].

Further improvement of this time complexity is given

as a research problem in Programming Pearls [Ben84].

Similarly, by using linear time algorithms of Fukuda et

al. [FMMT96a] for computing the optimized support

ranges and optimized confidence ranges, we can com-

pute the optimized support rectangle and the optimizeq

confidence rectangle in 0(n15) time.

Theorem 4.1 Each of the opttmtzed gain, support, and

confidence rectangles can be computed in O(nl 5, time.

This time complexity is a little more expensive than
that for the optimized gain admissible regions (see
the next subsection), and thus a data mining system
using rectangles is considerably slower than one using
admissible regions. Furthermore, in our experience, the
use of non-rectangular regions often yields useful rules.
For example, let us consider “Age” and “Salarfl as the
numeric attributes, and “GoldCard” as the objective
condition. Here, we would expect to find a rule that,
among people on the same salary, younger ones are
more likely to pay an annual fee for premium credit
cards. This expectation is confirmed if we find a two-
dimensionai association rule whose region resembles
a triangle, which is an admissible region, but (of
course) not a rectangle. Consequently, we believe that
admissible regions are better than rectangles for our
class of regions in two-dimensional association rules.

Algorithm for computing an optimized gain
admissible region

Since the intersection of an admissible region with
a column is an interval, it would appear that if we
compute the maximum gain range in each column and
compute their union, we can compute the optimized
gain admissible region. Unfortunately, this region
is often disconnected, although the connectivity of a
region is very important for creating a good rule. The
following algorithm is essentially the same as that
given by Asano et al. [ACKT96] for solving an image
segmentation problem. However, to the best of our
knowledge, this is the first case in which an algorithm
using “fast matrix searching” [A KM+ 87] routines has
been implemented in a database system.

For each m = 1,2, ... N, we pre-compute the in-
dices bottomm(s) and topm(s) for all 1 ~ s < N,
where bottomm (s) and topm(s) are defined so that

Iibommzm(.) g(m~ and Xp.m(’) g(u~ are maxi-
mized, respectively.

Lemma 4.1 The tndices topm(s) and bottomm(s) for

a11s=l,2 , . . . N can be computed in O(N) time.

Proof: Let us define Sum~(l) = ~i~~ g(~),,~ for
each integral subinterval 1 of [1, N]. Then, an inequality
Summ(l) + Summ(l’) ~ Summ(l n 1’) + Summ(l U 1’)
holds if 1 n 1’ # 0 (indeed, equality holds). This
inequality is often called the Monge inequahty. Define
an N x N matrix M whose (k, 1)-th entry is Sum~([k, 1])
if k ~ 1, and negative infinity otherwise. Because
of the Monge inequality, the matrix becomes a totally

monotone matrix, that satisfies

Lf(i, j)+lM(i +1, j+l)2M(i, j+l)+Ll(i+ 1,~)

for every 1< i < j+ 1< N. It is well known [AKM+87]
that all locations of the row maxima of this matrix
can be computed in O(N) time (of course, we cannot
afford to construct the matrix in order to obtain this
time complexity). By definition, the location of the
maximum entry of the s-th row is topm (s). Thus, we
can compute all topm(s) (s = 1, 2, ... N) in O(N) time.
The computation of bottomm (s) is analogous. ~

For two indices s and s’, we define coverm(s, s’) to be

Sum[bottomm(s), topm (s’)] if s s s’, and
Sum[bottom~(s’), top~(s)] ifs > s’.

Let G(*, < m) be the part of the grid on the left of the
m-th column, including G(*, m). We define 17(i, s m)
to be the maximum gain of admissible regions that
contain the pixel G(i, m) and are contained in the region
G(*, s m). Then, we have the following formula:

F’(i, ~ m+l) = ~~,~x~{F(j, < m)+covern+~(i, j)} (**)
——

or Oif the above value is negative. From this formula, we
can compute maxm{maxl f’(i, s m)} and the associated
region, which must be the optimized gain region.

Lemma 4.2 If F’(j, < m) for j = 1,2,. . . N are green,

we can compute F(i, < m + 1) for all i = 1,2, ..N in
O(N) time.

Proofi We can see that the upper and lower triangle
parts (D+ and D-, respectively) of the matrix D

defined by D(i, j) = F(j, < m) + coverm(i, j) are
totally monotone matrices. Thus, in O(N) time, we
can compute all the row maxima of D+ and D–, and
consequently, of D. By definition, F’(i, s m + 1) is
the i-th row maximum of D (or O, if the maximum is
negative). B

Theorem 4.2 The optimized gam admzsstble region for

a threshold $ can be computed m O(n) time.

Proof: We solve the formula (**) for m = 1,2,... N.
This requires 0(N2) = O(n) time. ~

18

hit A P3

P, m b
@

.

@
@

,,
.

min_s Support

Figure 4: Convexity Assumption

Approximation algorithms for other optimized

admissible regions

Unfortunately, if we consider admissible regions, the
opiimized support region and the optimized confidence
region are difficult to compute, and for each of them, we
only know an 0(n15A4) time algorithm, where ?d is the
total number of tuples. Moreover, it can be shown that
no algorithm running in polynomial time with respect
to n and log A4 exists unless P = NP [FMMT96b].

In this section, we substitute new optimization cri-
teria for the optimized support and optimized confi-
dence criteria. We will compute admissible regions that
closely approximate the optimized support/confidence
ones. For each admissible region P, we define a stamp
point (support(P), hit(P)). We make the following con-

vexity assumption:

Convexity Assumption. Given three admiss-
ible regions P1, P2, and P3, let (xi, Vi) be the
stamp point of Pi for i = 1,2,3. If *1 < Z2 < 23

and y2 < VI + (Y3 — yl)(xz — Z1)/(c3 — Zl), we

can substitute F’l or P3 for P2 to create a useful

association rule. See Figure 4.

In other words, if the stamp point (X2, yz) lies
below or on the line through stamp points (xl, yl)
and (Z3, y3), we do not use the region P2 to create a
rule. The convexity assumption cannot be theoretically
confirmed, since the usefulness of an association rule is
not a mathematical concept. In practice, however, we
have a huge number of sample points that are dense in
the Euclidean plane, as we usually handle more than
20 x 20 pixels and a large number of data, and hence
for any P2 there exist points P1 and P3 fairly close

to P2. Thus we believe that it is reasonable to use
the convexity assumption for computing approximate
solutions of optimized rules in a practical data mining
system.

Let us characterize the set of admissible regions that
cannot be replaced by other regions according to the
convex assumption. We call them focused regaons, the
name used by Asano et al. [ACKT96] in the field of
computer vision.

Lemma 4.3 An admissible region is focused if and onl,q

if at M an optimtzed gain admissible region with respect

i!o some confidence threshold.

l?roofi We consider the set S of all stamp points
associated wit h admissible regions. Because of the
convexity assumption, a stamp point associated with a
focused admissible region must be a point on the upper
convex hull of S. Hence, there exists a tangent line to
the convex hull of S at this point. Suppose that the
tangent line has a slope ~. Then, this point maximizes
y – TZ for the set of the stamp points. Accordingly,
the corresponding region P maximizes hit(P) – ~ x

support(P), and hence the optimized gain admissible
region with respect to the confidence threshold r. ~

For a given confidence threshold, the focused op-

timized support admissible region is defined as the
support-maximizing confident admissible region that is
focused. For instance, in Figure 4, P2 is the optimized
support admissible region for a confidence threshold d.
Since Pz is hidden inside the convex hull and is not
focused, PI, the focused optimized support admissible
region, is substituted for it.

For a given support confidence Z, the focused op-

timized colzfidence region is defined as the confidence-
maximizing ample region that is a focused region. For
instance, in Figure 4, P2 is the optimized confidence
admissible region for a support threshold rnin-s, and
P2 is replaced by P3, the focused optimized confidence
admissible region.

Lemma 4.4 The focused optimized support region and

the focused optimized confidence region can be computed

in O(n log ilf) time, where M is the support of the whole

grid G.

Proofi For the tangent line with slope T, we can

compute the optimized gain admissible region P for
the confidence threshold T in O(n). Note that when
~ increases, the confidence of P increases, and the
support of P decreases monotonically. Thus, in order
to search for the focused optimized confidence/support
admissible region, we perform a binary search; that

is, we (1) compute the region P. for ~ = O and the
region F’l for r = 1, (2) compute P2 for the slope of
the line POP1, and (3) repeat this process until we find

19

P’ and F’” that are the regions for the slope of the line

connecting themselves. Observe that no focused regions

exist between P’ and P“.

The above binary search seems to look for whole real
numbers. However, since a stamp point has integer
coordinate values, each slope r is a rational number
whose denominator and numerator are positive integers
in [1, Af], and a difference of two such different rational
numbers is at least l/lvf2. Thus, we can stop the search
if the width of the search range is reduced to l/lf2.
Hence, the binary search terminates in O(log Al) search
steps. Since a focused region for a given threshold
can be computed in O(n) time, the time complexity
is O(n log WI). U

Let P2 be the optimized support admissible region
for confidence threshold 0. Suppose that P2 is not
focused. Then, let P1 be the focused optimized support
admissible region for 0, and let P3 be the focused
optimized confidence admissible region for the support
of P2 . Figure 4 illustrates this situation. From the
definition of the focused optimized confidence/support
admissible region, PI and P3 are the optimized gain
admissible regions associated with the slope of the line
PI P3. Thus, the binary search for P2, which is given in

Lemma 4.4, computes PI and P3 in the final step, and
therefore we have the following:

Lemma 4.5 From the convextty assumption, PI and
P3 can replace Pz.

The case when P2 is the optimized confidence region
can be handled similarly.

Now we are interested in how close P1 and P3 are
to P2. A typical case is that in which PI c P2 c P3,

as shown in Figure 5 (for the l-dimensional case). If

the confidence threshold is 0.5 (i.e., 50’%0), P2 is the

optimized support range, which has support 200 and

confidence 0.5. However, P2 is not a focused range

(i.e., a maximum gain range), and instead the pair PI

(support 150 and confidence 0.63) and P3 (support 350
and confidence 0.485) are found as substitutes for P2.
Both P1 and P3 are maximum gain ranges associated
with a threshold 0.375 = (170 – 95)/(350 – 150), where
the gain is 38.75. It can be observed that it is reasonable
to choose PI or P3 to make an association rule instead
of P?.

Unfortunately, it can happen even in the l-dimensional
case that Pz does not resemble PI or P3. If the confi-
dence threshold is 0.5 in the data of Figure 6, there is
no intersection between Pz and P1 nor P3. To overcome
such an abnormal case, we could make PI a non-focused
region by using a heuristic to decrease the values of v
for the pixels in PI, and find a new focused region that
gives a better approximation of P2. This approach re-
sembles the “cutting plane” method used in operations
research [NKT89] to find a solution in the interior of a

u 50 50 50 50 50 50 50 50 50 50 50 50 50

v o 0 0 30 35 30 5 20 20 30 0 0 0

4
P,

b

-

-
P,

Figure 5: Optimized support range and its
tion by focused ranges.

approxima-

U 50 50 50 50 50 50 50 50 50 50 50 50 50

v 0 39 38 0 0 24 30 24 0 20 20 20 20

~~
P* P, P,

Figure 6: A bad example

feasible region. However, we have not yet implemented
this heuristic, since we have encountered no such an op-
timized region generating an important association rule
in practical data so far.

5 Visualization

Our scheme for two-dimensional data mining transforms
a set of tuples into a color image in a pixel grid G.
It thus provides an immediate method for visualizing
our association rules. Unfortunately, if we naively use

(vi,, , Ui,j – V,)j, O) for the color vector of the (i, j)-th
pixel, it does not always give what humans would regard
as a good image: the result is often too dark, and
if the confidence threshold is low, the red level is too
low for the difference in confidence to be distinguished.
We must therefore give transformations that make our
rules more visible. Since these transformations should
depend on the display system, we do not have a
universal formula. However, we have experimentally
implemented a transformation method specialized for
our demonstration system, so that users can actually
see our rules.

In the “interactive mode” of our demonstration sys-
tem, the user chooses attributes (from about 30 numeric
attributes and 100 Boolean attributes), indicates one
of gain, support, and confidence for selecting a feature
of the rule, and inputs a threshold. The system out-
puts the corresponding optimized region. If the rule is
a known one and the user wants to find a secondary
rule, the system can remove the obtained optimized re-
gion and find a secondary optimized region by applying
the same algorithm for the rest of the pixel grid. We
also have the “animated mode ,“ in which the user can

control the threshold (almost) continuously and see the

changes in the rule. For this purpose, we must compute

20

focused regions for many different thresholds on the fly.
The efficiency of the algorithm for computing a focused
region makes this approach practical.

6 Performance

The algorithm for computing focused regions has been
written in C++, and implemented as a function in
our DataBase SONAR (System for Optimized Numeric
Association Rules) prototype. Although we have also
tested our system on real databases, we evaluates its
performance on synthetic test data. We performed
experiments on an IBM PC Power Series 850 with a
CPU clock rate of 133 MHz and 96 MB of main memory,
running under AIX 4.1.

.
%
E.
j
x:..

3000-
Fi”ting all focused images +--

2503 -

2000 -

1ml

lW

503

b’

20XZ0 40x40 60X60 80X80 100X1W
01pixels

Figure 7: Number of focused regions

We obtained our test data as follows: We first
generated random numbers uniformly distributed in
[N2, 2N2] and assigned them to u(i,j). We then assigned
1 .,. N2 to V(i,j] from a cell at a corner to the central
cell, like spiral stairs. To determine the features of our
test data, we counted how many focused regions exist
in the test data (Figure 7). The number of focused
regions increases almost linearly in proportion to the
square root of the number of pixels. We have also done
experiment on a few real data of size up to 80 x 80 in a
financial application, and observed that the number of
focused regions increases sublinearly to the square root
of the number of pixels.

Figure 8 shows the execution time needed to find a
focused region with d = 0.1,0 .5,0.9 for the range of data
sizes from 20 x 20 to 1,000 x 1,000. The result of this
experiment was what we had expected — the execution
time needed to find a focused region increases linearly
in proportion to the number of pixels.

Figures 9 and 10 respectively show the execution
times needed to find a focused optimized confidence
region with minimum support of 10’ZO,5070, and 9070,
and a focused optimized support region with minimum

Figure 8: Finding a single focused region

i?0x20 40x40 60x30 W)X80 100.1 w
#01 pixels

Figure 9: Finding a focused optimized confidence region

confidence of 5070, 70Y0, and 9090 for numbers of pixels
ranging from 20 x 20 to 100 x 100. In both cases, the
execution time increases almost linearly in proportion
to the number of pixels.

7 Related Works

Interrelation between paired numeric attributes is a ma-
jor research topic in statistics; for example, covariance
and line estimators are well-known tools for representing
interrelations. However, these tools only show interre-
lation in an entire data set, and thus cannot extract a
subset of data in which a strong interrelation holds.

In order to extract strong local interrelations, several
heuristics using geometric clustering techniques have
been introduced [NH94b].

When we compute a two-dimensional association
rule, we could regard the Boolean attribute in the
objective condition as a special numeric attribute,
and apply three-dimensional clustering methods to
extract some interrelation. However, this approach has

21

Figure 10: Finding a focused optimized support region

serious defects. These three attributes do not have
equivalent roles; the Boolean attribute corresponds to
the objective condition, whereas the other attributes
give presumptive conditions. Therefore, a clustering
method with respect to a three-dimensional proximity
criterion does not find a good rule. The other defect is
that, clustering algorithms in three-dimensional space
are often time-consuming. For example, if we want to
compute the three-dimensional unit ball that contains
the maximum number of points in a given set of n
points, it will take 0(n3) time if we use a standard
computational geometric algorithm.

Some other works also handle numeric attributes and
try to derive rules. Piatetsky-Shapiro [PS91] studies
how to sort the values of a numeric attribute, divide
the sorted values into approximately equal-sized ranges,
and use only those fixed ranges to derive rules whose
confidences are almost 100’%o.Other ranges except for
the fixed ones are not considered in his framework. Our
method is not only capable of outputting optimized
ranges but is also more handy than Piatetsky-Shapiro’s
method, since we need not make candidate ranges
beforehand. Recently Srikant and Agrawal [SA96] has
improved Piatetsky-Shapiro’s method by adding a way
of combining some consecutive ranges into one range.
The combined range could be the whole range the
numeric attribute, which produces just a trivial rule.
To avoid this, Srikant and Agrawal present an efficient
way of computing a combined range whose size is at
most a threshold given by the user.

Some techniques, related but not directly applicable
to finding optimized association rules, have been de-
veloped for handling numeric attributes in the context
of deriving decision trees that are used for classifying
data into distinct groups. ID3 [Qui86, Qui93], CART
[BFOS84], CD7 [AIS93b], and SLIQ [MAR96] perform
binary partitioning of numeric attributes repeatedly un-
til each range contains data of one specific group with

high probability, while ZC [AGI+92] uses k decomposi-
t ion. Since both partitionings tend to yield large deci-
sion trees, in order to reduce the size of the trees, meth-
ods such as pruning some branches and linking some
ranges together have also been proposed.

Acknowledgment

The authors thank T. Asano, N. Katoh, R. Agrawal,
and R. Srikant for fruitful discussions.

References

[ACKT96]

[AGI+92]

[AIs93a]

[AIS93b]

[AKM+87]

[AS94]

[Ben84]

[BFOS84]

[FHLL93]

[FMMT96a]

Tetsuo Asano, Danny Chen, Naoki Katoh,

and Takeshi Tokuyama. Polynomial-time so-

~utions to image segmentations. In Proc.

7th A CM-SIAM Symposium on Discrete Algo-

rithms, pages 104–113, 1996.

R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer,

and A. Swami. An interval classifier for

database mining applications. In Proceedings

of the 18th VLDB Conference, pages 560–573,

1992.

Rakesh Agrawal, Tako Imielinski, and Arum

Swami. Database mining: A performance per-

spective. IEEE Transactions on Knowledge

and Data Engineering, 5(6):914–925, Decem-

ber 1993.

Rakesh Agrawal, Tako Imielinski, and Arum

Swami. Mining association rules between sets

of items in large databases. In Proceedings

of the ACM SIGMOD Conference on Manage-

ment of Data, pages 207–216, May 1993.

A. Aggarwal, M. Klawe, S. Moran, P. Shor, and

R. Wilbur. Geometric applications of a matrix-

searching algorithm. Algorithmic, 2:209–233,

1987.

Rakesh Agrawal and Ramakrishnan Srikant.

Fast algorithms for mining association rules.

In Proceedings of the 20th VLDB Conference,

pages 487-499, 1994.

Jon Bentley. Programming pearls. Communi-

cations of the ACM, 27(27):865–871, Septem-

ber 1984.

L. Breiman, J. H. Friedman, R. A. Olshen,

and C. J. Stone. Classification and Regression

Trees. Wadsworth, 1984.

Paul Fischer, Klaus-U Hoffgen, Hanno Lef-

mann, and Tomasz Luczak. Approximations

with axis-aligned rectangles. In Proceedings

of the 9th International Conference on Fun-

damentals of Computation Theory. Springer-

Verlag, August 1993.

Takeshi Fukuda, Yasuhiko Morimoto, Shinichi

Morishita, and Takeshi Tokuyama. Mining

optimized association rules for numeric at-

tributes. In Proceedings of the Fifieenth ACM

SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, June 1996.

22

[FMMT96bl Takeshi Fukuda, Yasuhiko Morimoto, Shinichi [SAD+ 931 Michael Stonebraker, Rakesh Agrawal, Umesh-

[GJ77]

[HCC92]

[KKS94]

[MAR96]

[NH94a]

[NH94b]

[NKT89]

[PCY95]

[PS91]

[PSF91]

[Qui86]

[Qui93]

[SA96]

lvforishita, and Takeshi Tokuyama. Data min- war Dayal, Erich J. Neuhold, and Andreas

ing using two-dimensional optimized associa- Reuter. DBMS research at a crossroads: The

tion rules: Scheme, algorithms, and visualiza- vienna update. In Pr-oceedmgs of the 19th

tion. In Technical Report, IBM Tokyo Research VLDB Conference, pages 688-692, 1993.

Laboratory, 1996.

M. R. Garey and D. S. Johnson. The rectilinear

steiner tree problem is np complete. SIAM J.

Apgd. Math, 32:836-834, 1977.

Jiawei Han, Yandong Cai, and Nick Cer-

cone. Knowledge discovery in databases: An

attribute-oriented approach. In Proceedings

of the 18th VLDB Conference, pages 547–559,

1992.

D. Keim, H. Kriegel, and T. Seidl. Supporting

data mining of large database by visual feed-

back queries. In Proc. iOth Data Engineering,

pages 302-313, 1994.

Manish Mehta, Rakesh Agrawal, and Jorma

Rissanen. Sliq: A fast scalable classifier for

data mining. In Proceedings of the Fifih In-

ternational Conference on Extending Database

Technology, 1996.

Raymond T. Ng and Jiawei Han. Efficient and

effective clustering methods for spatial data

mining. In Proceedings of the 20th VLDB

Conference, pages 144-155, 1994.

Raymond T. Ng and Jiawei Han. Efficient and

effective clustering methods for spatial data

mining. In Proc. 2t.?th VLDB Conference, pages

144-155, 1994.

G. L. Nemhauser, A. H. G. Rinnoy Kan, ,

and M. J. Todd. Optimization: Handbooks in

Operations Research and Management Science

Vol.1. North-Holland, 1989.

Jong Soo Park, Ming-Syan Chen, and Philip S.

Yu. An effective hash-based algorithm for

mining association rules. In Proceedings of the

ACM SIGMOD Conference on Management of

Data, pages 175-186, May 1995.

G. Piatetsky-Shapiro. Discovery, analysis, and

presentation of strong rules. In Knowledge

Discovery in Databases, pages 229-248, 1991.

G. Piatetsky-Shapiro and W. J. Frawley, edi-

tors. Knowledge Discovery tn Databases. AAAl

Press, 1991.

J. Ross Quinlan. Induction of decision trees.

Machine Learning, 1:81-106, 1986.

J. Ross Quinlan. C.4.5: Programs for Machine

Learning. Morgan Kaufmann, 1993.

Ramakrishnan Srikant and Rakesh Agrawal.

Mining quantitative association rules in large

relational tables. In Proceedings of the ACM

SIGMOD Conference on Management of Data,

June 1996.

23

