
Parallel Branch-and-Bound Graph Search for

Correlated Association Rules

Shinichi Morishita�

University of Tokyo

moris@is.s.u-tokyo.ac.jp

Akihiro Nakayay

University of Tokyo

nakaya@ims.u-tokyo.ac.jp

Abstract

There have been proposed e�cient ways of enumerating all the
association rules that are interesting with respect to support, con�-
dence, or other measures. In contrast, we examine the optimization

problem of computing the optimal association rule that maximizes
the signi�cance of the correlation between the assumption and the
conclusion of the rule. We propose a parallel branch-and-bound
graph search algorithm tailored to this problem. The key features of
the design are (1) novel branch-and-bound heuristics, and (2) a rule
of rewriting conjunctions that avoids maintaining the list of visited
nodes. Experiments on two di�erent types of large-scale shared-
memory multi-processors con�rm that the speed-up of the compu-
tation time scales almost linearly with the number of processors,
and the size of search space could be dramatically reduced by the
branch-and-bound heuristics.

1 Introduction

Many organizations are seeking strategies for processing or interpreting mas-
sive amounts of data that will inspire new marketing strategies or lead to the
next generation of scienti�c discoveries. In response to those demands, in recent
years, decision support systems and data mining systems have rapidly attracted
strong interests, and numerous optimization techniques for computing decision
trees, clusters, and association rules have been proposed. Among those tech-
niques, the development of e�cient ways of computing association rules has
attracted considerable attention.

�Address: O�ce 301, 7th Building, Department of Information Science, Faculty of Science,

University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Phone&FAX: +81-3-

5841-4116.
yAddress: Department of Genome Knowledge Discovery System (Hitachi), Institute of

Medical Science, University of Tokyo 4-6-1, Shirokane-dai, Minato Ward, Tokyo 108-8639,

Japan. Phone: +81-3-5449-5767. FAX: +81-3-5449-5568.

1

Association Rules

Given a set of records, an association rule is an expression of the form X) Y ,
where X and Y are tests on records, and X and Y are called the assumption

and the conclusion, respectively. Consider the market basket analysis problem
[1]. An example of an association rule is: \50% of customers who purchase
bread also buy butter; 20% of customers purchase both bread and butter." We
will describe the rule by

(Bread = 1)) (Butter = 1):

We call 50% the con�dence of the rule and 20% the support of the rule.
The signi�cance of an association rule has been evaluated by support and

con�dence [1, 2]. Higher support implies that the coverage of the rule is suf-
�ciently large, while higher con�dence shows that the prediction accuracy of
using the assumption X as a test for inferring the conclusion Y is su�cient. In
their pioneering work, Agrawal et al. [1, 2] de�ne that an association rule is
interesting if its support and con�dence are no less than given thresholds, and
they propose Apriori algorithm that enumerates all the interesting association

rules. The idea of Apriori algorithm has been explored by many researchers
[2, 8, 9, 10, 11, 12].

Motivating Example

Higher support and higher con�dence, however, are not necessarily su�cient
for evaluating the correlation between the assumption and the conclusion of an
association rule. Brin et al. [5] address this problem, and the following example
illustrates this issue.

Example 1.1 Consider the super market basket analysis problem [1]. Let
Bread;Butter and Battery be Boolean attributes. Suppose that the support
and the con�dence of the following rule are 29% and 48.3%, respectively:

(Bread = 1) ^ (Butter = 1)) (Battery = 1);

which means that customers who purchase both bread and butter may also buy
batteries. This implication di�ers from our common sense, but the support
and the con�dence are fairly high, and hence one may conclude that the rule
presents some unknown behavior of the customers. From a statistical viewpoint,
however, we also ought to look at the negative implication that when customers
who do not purchase both bread and butter may also buy batteries. In Table
1, which is called a contingency table, the row (Bread = 1)^ (Butter = 1) and
the row not((Bread = 1)^(Butter = 1)) show the number of customers who do
and do not meet (Bread = 1) ^ (Butter = 1), while the column (Battery = 1)
and the column not(Battery = 1) shows their corresponding numbers, similarly.

Note that Battery = 1 holds for 50% of all the customers, which is higher
than 48.3%, and hence customers satisfying (Bread = 1)^ (Butter = 1) are less

2

(Battery = 1) not(Battery = 1) Sum

(Bread = 1) ^ (Butter = 1) 29 31 60

not((Bread = 1) ^ (Butter = 1)) 21 19 40

Sum 50 50 100

Table 1: Contingency Table

likely to meet Battery = 1. Thus there is a slight negative correlation between
(Bread = 1) ^ (Butter = 1) and Battery = 1, though it is not signi�cant.

The above example suggests that we should measure the statistical signi�-
cance of the correlation between the assumption and the conclusion. To measure
the signi�cance of correlation, the �2 value has usually been applied to the con-
tingency table associated with the rule. The bene�t of using the �2 value is that
we can evaluate the signi�cance of an association rule by a single value rather
than multiple values such as support and con�dence. All association rules can
be ordered by their �2 values. We are then interested in �nding the optimal
association rule that maximizes the �2 value. Or we want to list the best n
association rules in descending order of �2 value. We can also provide a cuto�
value | say, at the 95% signi�cance level | for �2, and then we can enumerate

all the association rules whose �2 values are no less than that threshold. We
will consider those problems, and we call an association rule correlated if its �2

value is optimal, sub-optimal or no less than a given threshold value.

Related Work

Brin et al.[5] have studied this problem from a slightly di�erent aspect. Instead
of �nding correlated association rules, they focus on the computation of a set
of primitive tests that are not independent by the chi-squared test. Using the
strategy of Apriori algorithm [2], they present an algorithm for enumerating all
the sets of primitive tests that are not independent, but the algorithm is not
intended to compute correlated association rules.

Example 1.2 Let us consider the market basket analysis problem again. Sup-
pose that (Spaghetti = 1), (Tabasco = 1), and (Battery = 1) are not indepen-
dent, because (Spaghetti = 1) and (Tabasco = 1) are correlated. We however
cannot conclude that (Spaghetti = 1) ^ (Tabasco = 1)) (Battery = 1) is a
correlated association rule, since the assumption and the conclusion may not be
correlated at all.

One may try to use Brin et al.'s algorithm to enumerate instances of X[Y that
are not independent and then try to derive correlated association rules. But
there could be numerous instances ofX[Y from which no correlated association
rules could be created, because even if primitive tests in X are correlated, X
and Y are not correlated at all.

3

To keep the computation e�cient, Brin et al. use a minimum support thresh-
old as a pruning criteria. In practice, selecting a minimum support threshold
requires some considerations, because using a higher threshold often results in
pruning important patterns with lower support, while using a lower thresh-
old might produce a huge amount of patterns, which is computationally costly.
From the viewpoint of statistics, only the �2 value is essential, and hence Brin
et al. discuss the possibility of avoiding the heuristics of using the minimum
support threshold. We will work in this direction.

Overview

We de�ne our problem more formally. Given a set of Boolean attributes, we se-
lect B as a special attribute and call it an objective attribute, while we call all the
other attributes conditional. We use conditional attributes in the assumption
of a rule. Consider all the association rules of the form

(A1 = v1) ^ : : : ^ (Ak = vk)) (B = 1);

where vi = 0 or 1. We �rst remark that it is NP-hard to compute the optimal
conjunction in the assumption that maximizes the �2 value. One may try to

modify Apriori algorithm to compute the optimal conjunction, but this approach
may not be promising, because Apriori algorithm is designed to enumerate all
the possible association rules of interest, while our optimization problem targets
the optimal conjunction or sub-optimal ones.

To cope with such optimization problems, one common approach is an it-
erative improvement graph search algorithm that initially selects a candidate
conjunction by using a greedy algorithm and then tries to improve the ensemble
of candidate conjunctions by a local search heuristic; that is, from a conjunction
we generate a neighboring conjunction that is obtained by replacing one primi-
tive test with another, by deleting a test, or by inserting a new test. Figure 1(a)
represents the search space of all conjunctions by an undirected graph in which
a pair of neighboring conjunctions is connected by an edge. Starting from the
initial conjunction represented by the square dot, we want to search the graph
without visiting the same node more than once. Figure 1(b) illustrates such an
example.

To accelerate the performance of graph search, parallelizing the search has
been studied for various discrete optimization problems [3, 6]. We will exploit
this approach for searching the optimal conjunction. To avoid the repetition of
visiting the same node, conventional graph search algorithms maintain the list of
visited nodes [3, 6], which however could be a severe bottleneck of parallel search.
We instead propose a rule of rewriting a conjunction to others. We �rst apply the
rewriting rule to the initial conjunction to obtain child conjunctions, and then
we repeat application of the rule to descendant conjunctions so that we can visit
every conjunction just once without maintaining the list of visited conjunctions.
Moreover, each application of the rewriting rule can be well parallelized.

If the initial conjunction is empty, it is rather trivial to build such a search
tree. For instance, we can create one child of a conjunction by inserting one

4

(a) (b)

Figure 1: The �gure (a) shows the search space of conjunctions. The �gure (b)
shows the distributed search tree rooted at the square black dot.

primitive test. In general, however, an arbitrary conjunction could be selected
as the initial conjunction, and we need to create a neighboring conjunction by
using one of replacement, deletion, or insertion, which makes the extraction of
a search tree non-trivial.

To reduce the size of the search tree, we develop a branch-and-bound heuris-

tics appropriate for the signi�cance of correlation. We also develop implemen-
tation techniques such as materialization of projections and maintenance of
distributed priority queues.

2 Preliminaries

Attributes, Records, and Primitive Tests

The domain of a Boolean attribute is f0; 1g, where 0 and 1 represent true and
false, respectively. Let B be a Boolean attribute, let t denote a record (tuple),
and let t[B] be the value for attribute B. A primitive test has the form B = v

where v is either 0 or 1. A record t meets B = v if t[B] = v. A conjunction
of primitive tests t1; t2; : : : ; tk is of the form t1 ^ t2 ^ : : : ^ tk. A record t meets
a conjunction of primitive tests if t satis�es all the primitive tests. We simply
call primitive tests and conjunctions tests.

Association Rules

From a given set of Boolean attributes, we select one as a special attribute and
call it the objective attribute. We call all the other attributes conditional. Let
B be the objective attribute. An association rule has the form:

(A1 = v1) ^ : : : ^ (Ak = vk)) (B = v);

where Ai(i = 1; : : : ; k) is an conditional attribute, and each of vi and v is either
0 or 1. For instance, (Bread = 1) ^ (Butter = 1)) (Battery = 1) is an
association rule.

5

Y is true. Y is false Sum of Row

X is true. jRt

1j(= y) jR
f

1 j(= x� y) jR1j(= x)

X is false. jRt

2j(= m� y) jRf

2 j(= n� x� (m� y)) jR2j(= n� x)

Sum of Column jRtj(= m) jRf j(= n�m) jRj(= n)

Table 2: Contingency Table

Consider association rule X) Y . Let R be a set of records over R, and
let jRj denote the number of records in R. Let R1 be the set of records that
meet the assumption X , and let R2 denote R� R1. We call a record t positive

(negative, resp.) if t satis�es (does not meet) the conclusion Y . Let Rt and
Rf denote the set of positive and negative records in R, respectively. Table 2
summarizes numbers of records that meet each condition. Since R is given and
�xed, we assume that jRj, jRtj, and jRf j are constants, but jRt

1j, jR
t
2j, jR

f
2 j,

and jRf
2 j may vary according to the choice of the assumption X . Let n and

m denote jRj and jRtj respectively, then jRf j = n � m. Let x and y denote
jR1j and jR

t
1j respectively. Observe that if we specify the values of x and y, the

values of all the other variables are determined.

Chi-squared Value

The chi-squared value is a normalized deviation of observation from expectation.
Table 2 presents observed numbers of records. Expected numbers are calculated
as follows: In the entire relation, the probability that a positive record occurs

is
jRtj

jRj
= m

n
. Since the observed number of records satisfying X is jR1j, the

expected number of records meeting both X and Y is jR1j times
m
n
. Table 3

presents expected numbers of records. The chi-squared value is de�ned as the

Y is true. Y is false

X is true. jR1j
m

n
jR1j

n�m

n

X is false. jR2j
m

n
jR2j

n�m

n

Table 3: Expected Numbers of Records

total of the squared di�erence between the observed number and the expected
number divided by the expected number for each cell; that is,

(jRt
1j�jR1jmn)2

jR1jmn
+

(jR
f
1 j�jR1j

n�m
n

)2

jR1j
n�m
n

+
(jRt

2j�jR2jmn)2

jR2jmn
+

(jR
f
2 j�jR2j

n�m
n

)2

jR2j
n�m
n

:

Since all the variables are determined by x and y, we will refer the above formula
by �2(x; y). If X and Y are independent, the observed number is equal to the
expected number (in this case, y

x
= m

n
), and therefore �2(x; y) is equal to 0. In

the chi-squared test, if �2(x; y) is greater than a cuto� value { say, at the 95%
signi�cance level |, we reject the independence assumption.

6

Convexity of Function

Let �(x; y) be a function that is de�ned on (x; y) 2 D. �(x; y) is a convex

function on D if for any (x1; y1) and (x2; y2) in D and any 0 � � � 1,

�(�(x1 ; y1) + (1� �)(x2; y2)) � ��(x1; y1) + (1� �)�(x2; y2).

Let (x3; y3) = �(x1; y1)+(1��)(x2; y2), then �(x3; y3) � max(�(x1; y1); �(x2; y2)).

Proposition 2.1 �2(x; y) is a convex function de�ned on 0 � y � x.

Proof: For any �1 and �2, de�ne V = �1x+ �2y. Prove @
2�2(x; y)=@V 2 � 0.

The convexity of �2(x; y) is crucial to prove the intractability of computing
the optimal conjunction. We also use the convexity to derive an e�ective branch-
and-bound heuristics.

Theorem 2.1 Let S denote a set of conjunctions that use conditional at-
tributes, and Y be the objective conclusion. It is NP-hard to �nd the optimal
conjunction X 2 S such that the chi-squared value of X) Y is maximum.

Proof: The case for the entropy value is proved in [7]. In the proof, the
convexity of the entropy function is essentially used. The argument carries over
to the case for the chi-squared value, because the chi-squared function is also
convex.

3 Parallel Branch-and-Bound Graph Search

Search Space as an Undirected Graph

Let V denote the set of all conjunctions that use conditional attributes. A
conjunction C1 is adjacent to another conjunction C2 if C1 is obtained by re-
placing a primitive test in C2 with another, by deleting a primitive test in C2,
or inserting a new one to C2.

Example 3.1 Let C be the conjunction (A1 = 1) ^ (A2 = 0) ^ (A3 = 1).
C is adjacent to (A1 = 1) ^ (A2 = 0) ^ (A4 = 0), because (A3 = 1) in C

is replaced by (A4 = 0). Also, C is adjacent to (A1 = 1) ^ (A3 = 1) and
(A1 = 1) ^ (A2 = 0) ^ (A3 = 1) ^ (A5 = 1).

Let E denote the set of undirected edges between pairs of adjacent nodes in
V ; that is, E = f(C1; C2) j C1 is adjacent to C2g. The undirected graph (V;E)
represents the search space of all conjunctions. We call (V;E) the undirected

graph of adjacency. Figure 1(a) in Section 1 presents an example. We de�ne the
distance between nodes v and u by the length of the shortest path between v

and u. Put another way, the distance shows the minimum number of operations
on primitive tests to generate u from v.

7

Requirements on Search Tree

Suppose that we are given an arbitrary node t1 ^ : : : ^ tk in the search space
(V;E) as the initial conjunction. To realize the local search strategy starting
from t1^: : :^tk , we need to generate a search tree rooted at t1^: : :^tk such that
(1) the depth from t1 ^ : : :^ tk to any node v in the tree is equal to the distance
between t1 ^ : : :^ tk and v in (V;E), and (2) each conjunction is enumerated to
appear just once in the tree. For instance, Figure 1(b) illustrates such a search
tree rooted at the square black dot.

To build a search tree, we �rst present a way of creating a unique path from
the root of the initial conjunction to the node of any conjunction. We then show
how to assemble all the paths into a search tree.

Creating a Unique Path from the Initial Conjunction to Any Con-

junction

We introduce a way of representing a conjunction uniquely with respect to the
initial conjunction. We develop this idea motivated by techniques for enumerat-
ing geometric objects [4]. We assume that all the primitive tests are sorted in a
total order, and we denote the order by x1 < x2. For simplicity of presentation,
we introduce a dummy test ? that is strictly smaller than any test t; that is,
? < t. Let S denote the set of all the primitive tests. Let t1^ : : :^ tk be the the
initial conjunction given. Let C denote an arbitrary conjunction of primitive
tests in S. We represent C by a list of primitive tests according to the following
steps:

1. If ti(1 � i � k) appears in C, place ti at the i-th position in the list.
Otherwise, leave the i-th position open.

2. Sort all the primitive tests that appear in C but are not in ft1; : : : ; tkg,
in the ascending order. Let SL denote the sorted list. Select and remove
the �rst primitive test in SL, and assign it to the leftmost open position.
Repeat this process until SL becomes to be empty.

Observe that any conjunction can be represented by the unique list of primitive
tests, and hence we call it the canonical list.

Example 3.2 Let t1 ^ t2 ^ t3 ^ t4 ^ t5 be the initial conjunction. Its canonical
list is [t1; t2; t3; t4; t5]. Let
 denote an open position. The canonical list of
t4 ^ a1 ^ t2 ^ a2 ^ t5 ^ a3, where a1 < a2 < a3, is obtained as follows: We �rst
create [
; t2;
; t4; t5] by placing each ti of t4 ^ a1 ^ t2 ^ a2 ^ t5 ^ a3 at the
i-th position. We then assign a1 and a2 respectively to the �rst and the third
positions, which are open, and we append a3 at the end of the list. Consequently
we have [a1; t2; a2; t4; t5; a3].

The canonical list of t4 ^ a1 ^ a2, where a1 < a2, is obtained similarly. We
�rst create [
;
;
; t4;
], and then assign a1 and a2 into the �rst and the
second positions, respectively. Thus we obtain [a1; a2;
; t4;
].

8

We show how to rewrite the canonical list of the initial conjunction to that
of an arbitrary target conjunction, which creates a unique path from the root
to any node. Intuitively, we scan two lists together from left to right, and
when we �nd di�erent primitive tests at the same position, we perform one of
replacement, deletion, or insertion so that the initial conjunction is transformed
into the target conjunction after the scan.

Example 3.3 Consider canonical lists [t1; t2; t3; t4; t5] and [a1; t2; a2; t4; t5; a3].
Since the two primitive tests at the �rst position are di�erent, we replace t1
by a1. We then see the di�erence at the third position, and we replace t3
by a2. Finally, a3 at the sixth position of [a1; t2; a2; t4; t5; a3] does not appear
in [t1; t2; t3; t4; t5], and hence we insert a3. Consequently we have rewritten
[t1; t2; t3; t4; t5] to [a1; t2; a2; t4; t5; a3] by the following sequence of operations:

[t1; t2; t3; t4; t5]
replacement

! [a1; t2; t3; t4; t5]
replacement

!

[a1; t2; a2; t4; t5]
insertion
! [a1; t2; a2; t4; t5; a3]

We have applied three operations, and the distance between t1 ^ t2 ^ t3 ^ t4 ^ t5
and a1 ^ t2 ^ a2 ^ t4 ^ t5 ^ a3 in the graph of conjunctions is also 3.

There are some issues on sequences that use deletion.

Example 3.4 Consider the following two sequences

� [t1; t2; t3; t4; t5]
deletion
! [
; t2; t3; t4; t5]

insertion
! [a1; t2; t3; t4; t5]

� [t1; t2; t3; t4; t5]
replacement

! [a1; t2; t3; t4; t5]

The second sequence gives the minimum length path in the undirected graph of
adjacency. The following two sequences show another issue:

� [a1; t2; t3; t4; t5; t6]
deletion
! [a1;
; t3; t4; t5; t6]

replacement
! [a1;
; a2; t4; t5; t6]

� [a1; t2; t3; t4; t5; t6]
replacement

! [a1; a2; t3; t4; t5; t6]
deletion
! [a1; t2;
; t4; t5; t6]

[a1;
; a2; t4; t5; t6] is not a canonical list, because
 appears before a2.

In each case of the above example, we want to derive the second sequence
only. We can solve this problem by using the rule that we do not allow replace-
ment nor insertion once deletion is used. We will prove that this restriction does
not overlook the canonical list of any conjunction.

Making Canonical Lists Distributable to Arbitrary Multiple Pro-

cesses

We present a way of distributing the canonical lists of conjunctions to arbitrary
multiple processes so that each process can continue to rewrite independently.
Consider the following sequence again:

9

[t1; t2; t3; t4; t5]
replacement

! [a1; t2; t3; t4; t5]
replacement

!

[a1; t2; a2; t4; t5]
insertion
! [a1; t2; a2; t4; t5; a3]

Suppose that we assign the third canonical list [a1; t2; a3; t4; t5] to one process.
We want to avoid giving to the process the history of creating the previous
two canonical lists, because in general the history could be lengthy. We rather
provide minimum information to the process so that the process can continue to
rewrite the canonical list. For instance, it is enough to provide the information
that primitive tests up to the third position have been updated, a2 is the largest
primitive test that has been most recently added, and no primitive test has been
deleted. With this information, we can then append a3, which is greater than
a2, at the end of [a1; t2; a2; t4; t5].

In general, we add the following auxiliary information to a canonical list
[x1; : : : ; xn], and we represent the extension by h[x1; : : : ; xn]; n; i;max; dmodei,
which we also call a canonical list.

� n: The number of primitive tests in the canonical list.

� i: Let j be an index such that i � j. We can update the primitive test at
the j-th position in the next step.

� max: max denotes the largest primitive test among all the primitive tests
that have been added. In the next step, we need to add a new primitive
test that is greater than max when we perform replacement or insertion.
For the initial conjunction we set max to ?, where ? is the dummy test
smaller than any primitive test.

� dmode: For the initial conjunction, dmode = 0. Once deletion is applied,
dmode is set to 1. When dmode = 1, only deletion is applicable.

Application of replacement, insertion or deletion to is de�ned as follows:

� Replacement: When i � n and dmode = 0, we can replace the j-th
(j � i) primitive test with x such that max < x and x 62 ft1; : : : ; tkg.

h[x1; : : : ; xn]; n; i;max; 0i
replacement

!

h[x1; : : : ; xj�1; x; xj+1; : : : ; xn]; n; j + 1; x; 0i:

� Insertion: When dmode = 0, we can insert x such that max < x and
x 62 ft1; : : : ; tkg at the end of the list.

h[x1; : : : ; xn]; n; i;max; 0i
insertion
!

h[x1; : : : ; xn; x]; n+ 1; n+ 2; x; 0i:

� Deletion: When i � n, we can delete the j-th (j � i) primitive test, and
we set dmode to 1.
h[x1; : : : ; xn]; n; i;max; dmodei

deletion
!

h[x1; : : : ; xj�1;
; xj+1; : : : ; xn]; n� 1; j + 1;max; 1i

Table 4 presents two examples of such sequences.

10

h[t1; t2; t3; t4; t5]; 5; 1;?; 0i h[t1; t2; t3; t4; t5; t6]; 6; 1;?;0i
replacement

! h[a1; t2; t3; t4; t5]; 5; 2; a1; 0i
replacement

! h[a1; t2; t3; t4; t5; t6]; 6; 2; a1; 0i
replacement

! h[a1; t2; a2; t4; t5]; 5; 4; a2; 0i
replacement

! h[a1; a2; t3; t4; t5; t6]; 6; 3; a2; 0i
insertion
! h[a1; t2; a2; t4; t5; a3]; 6; 7; a3; 0i

deletion
! h[a1; a2;
; t4; t5; t6]; 5; 4; a2; 1i

deletion
! h[a1; a2;
; t4;
; t6]; 4; 6; a2; 1i

Table 4: Examples of Distributable Sequences

Theorem 3.1 Let A and B denote a given initial conjunction and an arbitrary
conjunction. There exists a unique sequence of application of replacement, inser-
tion or deletion that rewrites the canonical list of A to that of B. Furthermore,
the number of instances of application is equal to the distance between A and
B in the undirected graph of adjacency.

Proof: The proof is an induction on the number of positions where the two
primitive tests disagree in A and B, and let d denote the number. Observe that
d is equal to the distance between A and B in the undirected graph of adjacency.

We construct a unique sequence of rewriting A into B by applying one of the
three operations d times.

Suppose that the initial conjunction A contains n primitive tests in it, and
its canonical form is [t1; : : : ; tn]. Let nB denote the number of primitive tests
in B. In what follows, for simplicity and readability, we assume that A and B

denote their canonical forms.
We �rst consider the base case when d = 1. Since d = 1, the number of

primitive conjunctions nB is either n � 1, n or n + 1. In each case, we can
generate B from A by the application of deletion, replacement, or insertion.

� When nB = n� 1, B must contain an open position
, and suppose that

 is located at the j-th position. Deleting the j-th primitive test in A

yields B.

� When nB = n, suppose that A and B disagree at the j-th position. B

can be generated by replacing the primitive test at the j-th position in A

with that at the j-th position in B.

� When nB = n+1, A and B are equal except that B has an extra primitive
test at the (n + 1)-th position, and hence B can be created by inserting
the last primitive test of B into A.

When d > 1, we consider the three cases below:

� When nB < n, B must contain some open positions, and let j denote
the last position where
 is located. Replace
 at j-th open position
in B with the primitive test at the j-th position in A, and let B0 denote
the result. By the inductive hypothesis, there exists a unique sequence of
(d � 1) operations that rewrite A into B0. Note that B can be rewritten
from B0 by one operation of deletion.

11

� When nB = n, A and B disagree at d positions, and let j denote the last
position of disagreement. Let B0 denote the result of replacing the primi-
tive test at the j-th position in B with that at the j-th position in A. B0

can be obtained from A by (d�1) operations by the inductive hypothesis,
and B can be generated from A by one operation of replacement.

� When nB > n, B has extra (nB � n) primitive tests at the end. Let
B0 denote the result of deleting the last primitive test from B. By the
inductive hypothesis, there is a unique sequence of (d � 1) operations to
rewrite A into B0. We can obtain B by the application of insertion to B0.

Distributable Search Tree

The distributable search tree is a binary tree that displays all the sequences
from the initial canonical list to the canonical list of any conjunction. Figure 2
illustrates such an example. Theorem 3.1 implies that any distributable search
tree meets the two requirements on search trees; that is, (1) the depth from the

root to any node v in the tree is equal to the distance between the root and v in
the graph of adjacency, and (2) each conjunction is enumerated to appear just
once in the tree.

Furthermore any node in a distributable search tree can be assigned to any
process in a
exible manner.

h[t1; t2; t3; t4; t5]; 5; 1;?; 0i

: : :

deletion
. : : :

replacement
: : :

insertion
& : : :

h[
; t2; t3; t4; t5]; 4; 2;?; 1i h[a1; t2; t3; t4; t5]; 5; 2; a1; 0i h[t1; t2; t3; t4; t5; a1]; 6; 7; a1; 0i

: : :

deletion
: : : : : :

replacement
: : : : : :

insertion
: : :

h[
; t2;
; t4; t5]; 3; 4;?; 1i h[a1; t2; a2; t4; t5]; 5; 4; a2; 0i h[t1; t2; t3; t4; t5; a1; a2]; 7; 8; a2; 0i

: : :

deletion
: : : : : :

replacement
: : : : : :

insertion
: : :

h[
; t2;
;
; t5]; 2; 5;?; 1i h[a1; t2; a2; t4; a3]; 5; 6; a3; 0i h[t1; t2; t3; t4; t5; a1; a2; a3]; 8; 9; a3; 0i

: : : # : : : : : : # : : : : : : # : : :

Figure 2: Example of Distributable Search Tree

Best-First Search

Next we discuss how to traverse the distributed search tree. Suppose that we
compute an initial conjunction by a greedy algorithm that always makes the
choice that looks best at the moment. Next we need to consider how to scan the
distributed search tree rooted at the initial conjunction. One may try the depth-
�rst search or the breadth-�rst search, but when we look for the conjunction
that maximizes the chi-squared value, we should make a locally optimal choice
in hope that this choice will lead to the global optimal solution. We therefore
select the best-�rst search strategy that expands a node whose chi-squared value
is maximum at the moment.

12

We implement the best-�rst search by using a priority queue. First we insert
the initial conjunction into the empty queue. We repeat the process that we
remove the �rst node v from the queue, compute the chi-squared value of v,
update the best chi-squared value if necessary, use the chi-squared value of v to
prioritize each child of v, and insert all the chide nodes of v into the queue.

Later in this section we show how to distribute the queue to multiple pro-
cesses, but before that we show two techniques to improve the performance of
the best-�rst search.

Branch-and-Bound Heuristics

Suppose that we examine a node v in a distributable search tree. The following
theorem shows how to compute an upper bound of the best chi-squared value
that could be obtained by scanning all the nodes in the subtree rooted at v. If
the upper bound is smaller than the optimum chi-squared value at the moment,
we can ignore and prune the subtree.

Theorem 3.2 Let v be a node in a distributed tree. Suppose that

v = h[x1; : : : ; xi; xi+1; : : : ; xk]; k; i+ 1;�;�i:

Let a (b, resp.) denote the number of (positive) records that meet x1 ^ : : :^ xi.
Let w be an arbitrary descendant of v. Note that the conjunction of w contains
x1 ^ : : :^ xi. Let p (q, resp.) denote the number of (positive) records that meet
the conjunction of w. Recall that �2(p; q) is the chi-squared value of w, and we
have:

�2(p; q) � maxf�2(b; b); �2(a� b; 0)g:

Proof: Let n and m denote respectively the number of records and the number
of positive records in the entire relation. Consider the points (a; b) and (p; q)
in the two-dimensional Euclidean plane. It is easy to see that (p; q) falls in
the convex region whose vertexes are (0; 0), (b; b), (a; b), and (a � b; 0). To be
more precise, we have 0 � p � a � n, 0 � q � b � m, q � p, b � a, and
(p� q) � (a� b). When y=x = m=n, �2(x; y) is zero and minimum. Because of
the convexity of �2(x; y), it follows that �2(p; q) � maxf�2(b; b); �2(a � b; 0)g.

Materialized Projections

Let v = h[x1; : : : ; xi; xi+1; : : : ; xn1]; n1; i + 1;�;�i be an arbitrary node in a
distributed tree. Note that any node in the subtree rooted at v must contain
all the primitive tests in fx1; : : : ; xig, because none of fx1; : : : ; xig is updated
in the subtree. We call the set of records that meet x1^ : : :^xi the materialized

projection for v.
A materilized projection could be very large in practice. To utilize the main

memory e�ciently, we implemented a materialized projection by creating a bit
array of indexes to records in the materialized projection. If the bit of an

13

index is on, the record of the corresponding index belongs to the materialized
projection. For instance, the size of a bit array for a large database containing
ten million records is 1:25MB. Such bit arrays may still require large memory
space during the execution, especially when the queue becomes to be long during
the computation and cannot �t in the main memory. In this case, we put aside
nodes with lower priorities, which might not be processed for a while, to the
secondary disk at the moment, and later we restore them back to the main
memory.

We now discuss the bene�t of associating the materialized projection with
each node. Let w = h[x1; : : : ; xi; yi+1; : : : ; yn2]; n2; j+1;�;�i be a descendant of
v. When we compute the chi-squared value of w, we need to count the number
of records that satisfy the conjunction of w. It su�ces to check if each record in
the materialized projection for v also satis�es yi+1 ^ : : :^ yn2 . The materialized
projection could be much smaller than the entire relation. Since counting the
number of records that satisfy a conjunction is the crucial step of the whole
computation, the use of materialized projections could reduce the computation
time substantially. The materialized projection of each node can be computed
in an incremental manner; that is, the materialized projection for a child node
is a subset of that for its parent.

Distributing Priority Queue to Multiple Processes

It remains to parallelize the single process version of the best-�rst search. The
key extension is to divide the single queue into multiple disjoint queues and to
distribute them to multiple processes. Balancing sizes of queues among mul-
tiple processes at run time is rather straightforward, because any node can be
processed by any process. Each process maintains its own queue and broadcasts
the locally best chi-squared value to the others when the value is updated.

There are a couple of concerns that do not arise previously. The �rst issue is
that broadcasting the update of the locally best chi-squared value may increase
the communication overhead between the processes. Another concern is that
short delay of the broadcast may slightly deteriorate the overall performance,
because the branch-and-bound heuristics uses the best chi-squared value at the
moment. Tests however show that updates do not occur so often, and therefore
those concerns are not serious in practice.

Listing Best n Conjunctions

We have so far presented an algorithm for computing the optimal conjunction,
but it is easy to modify the algorithm to list the best n conjunctions. To this
end, we can change to maintain the list of the best n conjunctions instead of
the best conjunction. After this modi�cation, the branch-and-bound heuristics
still works, because we can use the n-th node instead of the best node to prune
the search space according to Theorem 3.2.

14

4 Experimental Results

Implementation

We implemented our algorithm by using C++ and POSIX thread library. Ex-
periments were performed on two di�erent types of large scaled shared-memory
multi-processors. One is Sun Microsystems Ultra Enterprise 10000 with 64 Ul-
traSPARC processors running at 250MHz, 16GB of main memory, and 1MB of
L2 cache for each processor, working under Solaris 2.5.1. Another is SGI Origin
2000 with 128 R10000 processors running at 195MHz, 24GB main memory, and
4MB L2 cache for each processor, running under IRIX 6.5SE. We limit the size
of main memory to 2GB in order to verify that our implementation uses at most
2GB of main memory. In the case of SGI Origin 2000, since the time to access
the remote memory is almost three times larger than the time to access the local
memory, we had to implement each thread to keep a local copy of the entire
relation to accelerate the overall performance.

Test Data

We randomly generated such a relation that the relation contains one hundred
thousand records and the value of an attribute in a record is equal to 1 with
a probability of p. We show the experimental results when p = 0:3, because
in this case, the execution time was at most several hours, and therefore we
can measure the speed-up and the e�ect of the branch-and-bound heuristics in
a reasonable amount of time. The relation contains one hundred conditional
attributes and one objective attribute. We used one hundred primitive tests
of the form (A = 1), where A is a conditional attribute. As the conclusion,
we used (B = 1), where B is the objective attribute. We selected the initial
conjunction in a greedy manner. We applied our implementation to the test
data until the algorithm terminates; that is, all the queues become to be empty,
and the optimal conjunction is identi�ed.

E�ect of Branch-and-Bound Heuristics

Since there are one hundred primitive tests, the algorithm could generate 2100

conjunctions in the worst case. As a result of the branch-and-bound heuristics,
however, the algorithm generates much less conjunctions. We have performed

the cases when numbers of threads are 1, 2, 4, 8, 16, 32, 64, and 128. The total
number of conjunctions inserted into the distributed queues ranges from 24194
to 24463. We have observed that every conjunction examined during the search
contains at most four primitive tests. Note that the number of all conjunctions
with at most four primitive tests is about 4:3� 106. This �gure again indicates
that the branch-and-bound heuristics can drastically reduce the search space.

15

Enterprise 10000 Origin 2000

#(threads) min max avg s.d. min max avg s.d.

2 12106 12176 12141 35 11431 12852 12141.5 710.5

4 5544 6473 6070.5 335.7 5843 6382 6093.8 201.3

8 2734 3411 3035.3 226.4 2814 3223 3057.9 128.6

16 884 2085 1523.4 309.7 1364 2106 1528.9 166.8

32 453 1189 764.5 150.3 551 1169 746.0 142.1

64 244 632 383.6 101.0 201 765 382.2 103.0

128 N/A N/A N/A N/A 85 413 191.1 67.9

Table 5: Statistics of Numbers of Conjunctions Inserted into Distributed Queues

E�ect of Maintaining Distributed Queues

In order to analyze the e�ect of maintaining distributed queues assigned to
multiple processes, Table 5 shows the statistics of the number of conjunctions
inserted into each queue. Consider the set of the numbers of conjunctions in-
serted into all distributed queues. For each number of threads, Table 5 presents

the minimum number, the maximum number, the average number, and the
standard deviation of the set of those numbers. Observe that the standard de-
viation of each case is fairly small, which implies that distributing conjunctions
to multiple threads works well.

Speed-up

The speed-up ratio of n threads is de�ned as the ratio of the execution time of
one thread to the execution time of n threads. Figure 3 (a) and (b) present
that the speed-up scales almost linearly with the number of threads on both
Sun Microsystems Ultra Enterprise 10000 and SGI Origin 2000. Table 6 shows
the execution time in seconds.

1
2

3.8

7.2

11.4

19

27

33.5

12 4 8 16 32 48 64

S
pe

ed
up

Number of Threads

1
1.9
3.7

7.4

10.8

18.11

24.9

31.3

40.4

48.2

124 8 16 32 48 64 96 128

S
pe

ed
up

Number of Threads

(a) Sun Microsystems (b) SGI Origin 2000

Ultra Enterprise 10000

Figure 3: Speed-up Ratio

16

Enterprise 10000 Origin 2000

#(threads) Execution Time Speed-up Ratio Execution Time Speed-up Ratio

1 6,760 1.00 6,503 1.00

64 202 33.47 219 31.30

128 N/A N/A 135 48.17

Table 6: Execution Time in Seconds and Speed-up Ratio

Optimizing the Objective Criteria

Until the system �nds the optimal conjunction, it outputs the optimal conjunc-
tion at the moment. Let X and Y denote the assumption and the conclusion
of an association rule. Table 7 presents candidates of the optimal conjunction
that the system output during the computation when the system was executed
as 64 threads on Sun Enterprise 10000.

X is true. X is false.

Assumption X Y is true. Y is false. Y is true. Y is false. �
2

[t1; t2] 9807 4240 20575 65378 12014.836

[a10; t2] 5962 411 24420 69207 12841.383

[a15; a23; a90] 5810 161 24572 69457 13445.606

[t1; a39; a90] 5833 148 24549 69470 13559.018

Table 7: Candidates of Optimal Conjunctions Calculated During the Compu-
tation ([t1; t2] is the initial conjunction, and [t1; a39; a90] is the optimal one.)

Relationship between Execution Time and Size of Search Space

We have so far presented the performance of our system applied to the set of
one hundred thousand records such that the value of each attribute in a record
is equal to 1 with a probability of p = 0:3. If we use higher values for the
probability p, the number of conjunctions examined increases, and therefore the
total execution time also grows. Table 8 summarizes the performance results
of executing our algorithm as 32 threads on SUN Ultra Enterprise 10000. The
execution time does not always scale to the number of conjunctions examined,
since time to handle a longer conjunction with more primitive tests decreases

because of the e�ect of using materialized projections. The execution time also
depends on the structure of the search tree. But in general, the growth of the
number of conjunctions raises the execution time.

5 Conclusion

We have examined the optimization problem of computing the optimal con-
junction maximizing the chi-squared value that indicates the signi�cance of the
correlation between the assumption and the conclusion of the rule. Although

17

p Execution Time Number of
in Seconds Conjunctions

0.3 354 24,463

0.4 1,396 74,169

0.5 2,525 233,148

0.6 8,261 803,280

Table 8: Relationship between the Performance and the Size of Search Space

this optimization problem is NP-hard, we have introduced a novel data structure
called the distributable search tree, and we have presented how to construct this
tree and how to speed up the performance of searching the distributable search
tree on multiple processes. Our technique carries over to the general cases when
we use the entropy function, the gini index, or the correlation coe�cient as
evaluation criteria.

In Section 4, we use a synthesis data to evaluate the performance of our
system. In practice, we have been applying our system to the analysis of multiple
factors leading to a common disease such as diabetes, or high blood sugar level.
This case poses another problem of �nding a conjunction to split data into two
classes so that the average of the objective numeric attribute values in one class
is substantially higher than that in the other class. It is however NP-hard to �nd
the optimal conjunction that maximizes the interclass variance [7]. Developing
an e�ective branch-and-bound heuristics for this case is an interesting problem.

Acknowledgements

All experimental results are done by using parallel machines at HumanGenome Center,

Institute of Medical Science, University of Tokyo. This research is partly supported

by Grant-in-Aid for Scienti�c Research on Priority Areas \Discovery Science" from

the Ministry of Education, Science and Culture, Japan.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets

of items in large databases. In Proceedings of ACM SIGMOD, pages 207{216,

May 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In

Proceedings of VLDB Conference, pages 487{499, 1994.

[3] G. Y. Ananth, V. Kumar, and P. Pardalos. Parallel processing of discrete opti-

mization problems. 1993.

[4] D. Avis and K. Fukuda. A basis enumeration algorithm for linear systems with

geometric applications. Applied Mathematics Letters, 5:39{42, 1991.

[5] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing

association rules tocorrelations. In Proceedings of ACM SIGMOD, pages 265{276.

SIGMOD Record 26(2), June 1997.

18

[6] V. Kumar, A. Grama, and G. Karypis. Introduction to Parallel Computing: De-

sign and Analysis of Algorithms. Benjamin Cummings, Nov. 1993.

[7] S. Morishita. On classi�cation and regression. In Proceedings of Discovery Science,

DS'98, Lecture Notes in Arti�cial Intelligence, volume 1532, pages 40{57, Dec.

1998.

[8] R. T. Ng, L. V. Lakshmanan, J. Han, and A. Pang. Exploratory mining and

pruning optimizations of constrained association rules. In Proceedings of ACM

SIGMOD, pages 13{24, June 1998.

[9] J. S. Park, M.-S. Chen, and P. S. Yu. An e�ective hash-based algorithm for

mining association rules. In Proceedings of ACM SIGMOD, pages 175{186, May

1995.

[10] R. J. Bayardo Jr. E�ciently Mining Long Patterns from Databases. In Proceedings

of ACM SIGMOD, pages 85{93, June 1998.

[11] R. J. Bayardo Jr., R. Agrawal, D. Gunopulos. Constraint-Based Rule Mining in

Large, Dense Databases. In Proceedings of ICDE, pages 188-197, March 1999.

[12] R. Srikant and R. Agrawal. Mining quantitative association rules in large rela-

tional tables. In Proceedings of ACM SIGMOD, June 1996.

19

