
Avoiding Cartesian Products in Programs for Multiple Joins

(Extended Abstract)

Shinichi Morishita *

Stanford University and IBM Researchf

Abstract

Avoiding Cartesian products is a common heuristic

to reduce the search space of join expressions (order-

ings) over some set of relations. However, this heuris-

tic cannot guarantee optimal join expressions in its

search space because the cheapest Cartesian-product-

free (CPF, for short) join expression could be signifi-

cantly worse than an optimal non-CPF join expression.

In a recent PODS, Tay [9] gave some conditions on ac-

tual relations that ensure the existence of an optimal

CPF join expression; however, the conditions turn out

to be applicable only in special cases. In this paper, we

do not put any restrictions on actual relations, and we

introduce a novel technique that derives programs con-

sisting of joins, semijoins, and projections from CPF

join expressions. Our main result is that for every join

expression, there exists an equivalent CPF join expres-

sion from which we can derive a program whose cost is

within a constant factor of the cost of an optimal join

expression.

‘Department of Computer Science, Stanford University,

Stanford, CA 94305, Email: morisitaQcs.stanford, edu

‘The author belongs to Almaden Research Center and

Tokyo Research Laboratory

Permission to copy without fee all or part of this material is
granted provided that the oopies are not made or distributed for
diraot commercial advantaga, the ACM copyright notica and tha
titla of tha publication and ita date appaar, and notice ie given
that copying is by permission of the Association for Computing
Machinery. To copy otharwisa, or to republish, requiras a fee
and/cr spacific parmissicn.
11th Principles cf Database Systems/6/92/San Diago, CA
@1992 ACM 0.89791 -520.8 /92/0006 /0368 ...$1 .50

1 Introduction

Computing the natural join of a set of relations

plays an important role in relational and deductive

database systems. In general, to solve this problem

efficiently we need to find a way to reduce the

number of intermediate tuples to compute the final

result.

If the scheme of these relations is acyclic (tree),

the cost of taking the join is polynomial in the

size of the input relations and the output (See

[11], Chapter 11). The method first applies

to the relations a full reducer [2], a sequence

of semijoins, which makes the relations globally

consist ent by eliminating dangling tuples. Then it

takes the join by using a monotone join expression

[1], which guarantees that no intermediate join

has more tuples than the final join. Yannakakis

[13] extended this idea to compute a project-join

expression with an acyclic database scheme. For

cyclic schemes the problem is NP-complete and

those methods above cannot be generalized. Many

attempts have been made to reduce the cyclic

problem to the acyclic problem. For example,

it was shown [3, 4] that if we have a program

for solving the join by applying joins, semijoins,

and projections, the program crest es an embedded

acyclic database scheme consisting of the input

relations, the result relation, and subsets of the new

relations generated by the program. Then once the

embedded acyclic database scheme is found, it can

be solved polynomially, However, there remains

the question of how to make an efficient program

to compute the join at the beginning.

Another

the search

approach to the problem is to reduce

space of join expressions (orderings of

368

joins), which can be exponential in the number of

relations, and to pick an optimal join expression.

An optimal join expression is one that has the least

number of int ermediat e t uples generated among all

join expressions. The cost of a join expression

is the sum of the tuples appearing in the input

relations or the relations generated during the

evaluation of the join expression. One heuristic

commonly used in the evaluation of joins is to

use linear join expressions, which have the form

(... (RI NR~) ~ . . .) W Rn. This heuristic is

of practical interest because it allows us to keep

only one temporary relation at any time. Another

heuristic is to avoid Cartesian products because

Cartesian products tend to be expensive.

Smith and Genesereth [6] considered linear join

expressions (conjunctions, to them), and gave an

“adjacency restriction rule” which improves the

cost of a join by locally swapping two adjacent re-

lations. Query optimizers in many well-known sys-

tems, for example INGRES [12] and System R [5],

use one or both heuristics. Swami and Gupta [7, 8]

used both heuristics to reduce the search space

and compared several statistical techniques, such

as iterative improvement and simulated annealing,

based on the criterion that a query optimizer is

good if it performs well in the average and very

rarely performs poorly.

From the theoretical viewpoint, however, re-

stricting the search space by each heuristic may

result in losing all optimal expressions from the

search space. For Example, the cheapest linear join

expression could be much worse than an optimal

nonlinear join expression, and the cheapest CPF

join expression could be significantly more expen-

sive than an optimal non-CPF join expression. We

will give such an example in Section 2. In a recent

POD S, Tay [9] gave some conditions on actual data

ensuring that there exists an optimal linear join ex-

pression or an optimal CPF join expression. The

conditions turned out to be rather restrictive and

applicable only in special cases but showed the dif-

ficulty of the problem.

Let us relax the problem a little. We define

a quasi-optimal join expression to be one whose

cost is bounded by the cost of an optimal join

expression times the size of the database scheme.

The size of the database scheme depends on the

number of attributes and the number of relation

schemes in the database scheme, and therefore it

is independent of the size of the actual data (the

number of the tuples in the actual relations). In

practice the size of the database scheme is much

smaller than the size of the actual data, and it

can be thought as a constant. Thus the cost of a

quasi-optimal join expression is within a constant

factor of the cost of an optimal join expression.

Now consider the following question;

Among all CPF join expressions

does a quasi-optimal one exist?

However, the answer to the question is “No.” We

will give an counter example in section 2,

To compute the join of the given relations,

join expressions have been used so far. Now as

facilities to compute the join we employ programs

that consist of joins, semijoins, and projections.

There could be, however, an infinite number of

programs to compute the join of the given relations.

In order to reduce the number of programs to

consider we present a novel algorithm that derives

a program from any CPF join expression, and we

will use only those programs derived from CPF

join expressions by the algorithm. Observe that

the number of programs that we might use is

equal to the number of all CPF join expressions.

Furthermore, the cost of deriving a program from

any CPF join expression is bounded by the size of

the given database scheme instead of the size of

actual relations.

Now we call a program a quasi-optimal program

if the number of t uples appearing in the input

relations and the intermediate relations generated

by the program is bounded by the cost of an

optimal join expression times the size of the

database scheme. Again, if we consider the size

of the database scheme as a constant, the cost of a

quasi-optimal program is within a constant factor

of the cost of an optimal join expression.

A program derived from any CPF join expression

by the algorithm is not necessarily quasi-optimal.

However, we can prove the following interesting

property.

Among all CPF join expressions there exists

one from which a quasi-optimal program can

be derived.

369

After giving some terminology in Section 2, we

present the algorithm in Section 3.

2 Preliminaries

2.1 Relational Databases

We use the terminology given in [10]. A Telation

scheme is a finite set of attributes. We use bold

letters, say R, to denote relation schemes. A

relation over a relation scheme R is represented by

R(R) or R. A database scheme is a multiset of

relation schemes. We use calligraphic letters, for

example D, to denote database schemes.

Let D be a database over a database scheme

D = {RI,. ... Rn}. Suppose that D assigns R~

to R;. W D denotes the join of D, RI N . . . ~ Rn.

Observe that w D is a relation over the relation

scheme UD. Let D’ be a subset of D. .D[D’] denotes

the restriction of the database D to 27’; that is

D[D’] assigns to R c D’ the same relation as 23

does. Note that M D [D’] is a relation over the

relation scheme UD’.

We can represent a database scheme D by a

hypergr’aph that has all attributes appearing in D

as its nodes and all relation schemes in D as its

hyperedges. In a hypergraph a path from edge RI

to Rk is a sequence of k (~ 1) edges Rl, . . .,Rk

such that Ri fl R;+l is nonempty for 1 s z < k.

Two edges are connected if there is a path from one

to the other. A set of edges is connected if every

pair is connected. A (connected) component C of D

is a connected subset of D that for any R E C and

any S 6 D – C, R and S are not connected.

Example 1: Let 23 be the database scheme

{ABC, CDE, EFG, GHAj.

D is connected. Let D be a database

{RI, R2,R3,R4}

over D. Suppose that D assigns RI, R2, R3 and

R4 to ABC, CDE, EFG and GH.4 respectively.

D[{ABC, CDE}] is a database {R1,R2} that as-

signs RI and R2 to ABC and CDE respectively.

❑

2.2 Join Expressions and Programs

A join expression is an expression with relation

schemes as operands, join (M) as a binary operator,

and parentheses. We call E a join expression ooeT

a database scheme D if the set of relation schemes

in E is D.

Join El M E2 is a Cartesian product if El and

E2 do not share any at tribut es. A join expression

is Cartesian-product-free (or CPF, for short) if no

join is a Cartesian product. A join expression is

non-CPF if there exists a join that is a Cartesian

product.

Let D be a database over D. Suppose that D

assigns R, to Ri. E(D) means the evaluation of E

aft er replacing Ri by R;. E(D) computes the join

of D. For example let E be

(Rl w R2) N R3.

Then E(D) is (Rl M R2) M R3. To evaluate this

expression we fist compute RI M R2 and then

(Rl N R2) H R3. In this way join expressions

specify the orders of joins to be executed.

E needs to have at least one occurrence of each

relation scheme in D so that E(D) computes the

join of D. Furthermore only one occurrence is

enough to compute the join, We define a join

expression to be ezactly over a database scheme

~ if the join expression has only one occurrence of

each relation scheme in 27. In order to compute the

join of D throughout this paper we only consider

join expressions exactly over D.

A pTogTam P over a database scheme D =

{RI>..., R.} is a finite sequence of statements

S1. ..sm. In programs a bold letter is either a

relation scheme in D or a relation scheme var’iabie

that represents a relation scheme. Each statement

in a program is one of the following forms:

Project statement: R(R) := ZUR(S)

Join stat ement: R(R) := R(S) ~ R(T)

Semijoin statement: R(R) := R(R)R R(S)

In the project statement we require that U ~ S

and R is a relation scheme variable. R in the head

of the join statement must be a relation scheme

variable. We will call the left side oft he assignment

operator (:=) the head and the right side the body.

Each statement destructively assigns the relation

370

computed in the body to the head. Thus the

project statement assigns ~uli?(S) to the head, the

join statement assigns R(S) N R(T) to the head,

and the semijoin statement assigns R(R) LX R(S)

to the head. The assignment also may assign a

relation scheme to a relation scheme variable in the

head. Thus in the project statement the value of R

in the head becomes U, and in the join statement

the value of R becomes S U T.

Suppose that R(V) appears in the body of a

statement. If V is a relation scheme variable, R(V)

must be defined earlier by a join statement or a

project statement; that is, it must appear in the

head of an earlier statement sj (j < i) that is either

a join statement or a project statement. If V is a

relation scheme in D, R(V) may appear in the head

of an earlier semijoin statement or may not appear

in the head of any earlier statement.

P does not depend on any particular database

over D. Let D be a database over D that sets

Ri to Ri. P is applied to a database D over D if

we assign Ri to each occurrence of R(Ri) that is in

the body of a statement and does not appear in the

head of any earlier statement, and then we execute

the statements in order. We denote the application

of P to D by P(D).

Example 2:

(ABC M EFG) Cd(CDE N GHA)

is a nonlinear and non- CPF join expression exactly

over D = {ABC, CDE, EFG, GHA}. The follow-

ing sequence of statements is a program over D.

When applied to a database D over D, this pro-

gram computes N D in the head of the final state-

ment.

R(X) := R(ABC) ~ R(EFG)

R(Y) := R(CDE) w R(GHA)

R(X) := R(X) N R(Y)

2.3 Cost Model

We consider the amount of computation in exe-

cuting .E(D) or P(D). In order to compute joins,

semi-joins and projections there are many methods

that take advantage of indices, block sizes and main

memory sizes. We, however, simply use as the cost

measure the number of tuples that appear in the

input relations and the relations generated. This

cost measure is reasonable because when this cost

is n the cost of the actual best possible method is

no more than O(nlogn) [11].

Let IR / denote the number of tuples in a relation

R. The cost of solving E(D), denoted cost(E(D)),

is recursively defined as follows;

1. If E is a relation scheme R; and D assigns

relation R(Ri) to R;, cost(E(D)) = IR(R;)I.

2. HE is a join expression El N E2, cost(E(D)) =

IE(D)I + cost(E~(D)) + cost(Ez(D)).

For example, cost((121 M R2) M Rs) = /Rll+l Rzl+

IR,I + /R1 M R,l + I(RI N R,) N R,l.

Let P be a program consisting of m statements

over a database scheme D = {Rl, R.}. When

we apply P to a database D = {Rl, Rn}, let

&+k be the relation appearing in the head of

the kth statement (1 s k < r-n). The cost of

solving P(D), denoted cost(P(D)), is defined as

~~~~ IRJI.
To compute the join of a database D over D

we use join expressions exactly over the database

scheme D for D. We, however, should keep in

mind that a join expression having more than one

occurrence of a relation scheme in D can cost less

than any join expression exactly over 23. If we

allow such join expressions, however, the number

of join expressions to consider will explode, thus

such cases will not be taken into account.

Example 3: Let D be the following database over

27 = {ABC, CDE, EFG, GHA}.

R(ABC) R(CDE) R(EFG) R(GHA)

(a, 1, a) (a,l, a) (a, 1, a) (a,l, b)

(a: 102k, a) (ailOk, a) (a~102k, a) (a:103k, b)

(b,l, b) (b, 1, b) (b,l, b) (b,l, a)

(b:102k, b) (b:lOk, b) (b, 102k, b) (b, 103k, a)

(c, c, c) (c, c, c) (c, c, c) (c, c, c)

We assume that k > 1. Observe that D is

locally (pairwise) consistent; that is, for any pair of

371



relations R(X) and R(Y) in -D, mx(lZ(X) ~ R(Y))

is equal to R(X). But D is not globally consistent;

that is, it is not true that for any relation R(X) in

D ZX(N D) is equal to R(X). Actually N D has

only one tuple. This fact implies that it is useless

to apply a semijoin program [11] to this database.

Among all join expressions exactly over 23

E = (ABC N EFG) ~ (CDE ~ GHA)

is optimal. cost(E(D)) is less than 104k+l. Note

that -E is a non-linear and non- CPF join expression.

If we apply to D any CPF join expression exactly

over D, the cost exceeds 2. 105k. The cost of any

linear join expression applied to D also becomes

greater than 2 ~ 105k. ❑

This example shows that the cheapest linear join

expression and the cheapest CPF join expression

could be much worse than the optimal nonlinear

and non- CPF join expression. This is because in

the example above we can increase k as much as we

want. Thus in general there does not necessarily

exist a quasi-optimal CPF join expression.

2.4 Join Expression Trees

In order to explain the algorithms given in the next

section clearly we introduce a tree structure that

represents a join expression. Given a join expres-

sion E exactly over 23 we recursively construct the

join expression tree representing E, denoted TE, as

follows;

1.

2.

3.

Each node is a database scheme. The root is D.

If E consists of only one relation scheme R, let

TE be {R}.

If E is El ~ E2, let TEI and TE, be the

join expression trees representing El and Ez

respectively. TE is the join expression tree that

whose root D has TE1 and TEZ as its left and

right subtrees respectively.

One-to-one correspondence exists between join

expressions exactly over 27 and join expression trees

over D.

A join expression tree is called Cartesian-product-

jree (CPF) if it represents a CPF join expression.

Every node in a join expression tree is a connected

database scheme if and only if the tree is CPF.

{ABC, CDE, EFG, GHAJ

‘ABC’EZX’GHA
{ABC} {EI’G} {CDEj {GHA}

Figure 1: The join expression tree that represents

(ABC M EFG) N (CDE ~ GHA)

Let T be a join expression tree over 27 and D

be a database over 29. T(D) means the application

of T to D. T(D) is obtained by replacing each

database scheme V with N D[v]. Let cost (T(D))

denote the sum of tuples in all relations in T(D).

If T represents a join expression E exactly over D

then cost(T(D)) is equal to cost(E(D)).

Example 4: Figure 1 shows the join expression

tree that represents

(ABC M EFG) ix (CDE ~ GHA). ❑

3 Main Results

In this section first we present two algorithms

Algorithm 1 creates a CPF join expression tree

from any join expression tree over any connected

database scheme. Algorithm 2 derives a program

from any CPF join expression tree.

Suppose that by using Algorithm 1 and 2

sequentially we derive a program from an arbitrar>

join expression tree over any connected database

scheme. We will prove that for an arbitrary actual

database over the database scheme the cost Oj

the program is bounded by the cost of the giver

join expression tree times the size of the databast

stheme.

If the given join expression tree is optimal tc

compute the join of the database, then the pro

gram is quasi-optimal. Observe that the prograrr

is derived by Algorithm 2 from the CPF join ex.

pression tree that is created from the given joir

expression tree by Algorithm 1. Thus we have;

Among all CPF join expressions there exists

one from which a quasi-optimal program can

be derived by Algorithm 2.

372



Now we give Algorithm 1 and Algorithm 2.

Algorithm 1: Given a join expression tree over a

connected database scheme D, output a CPF join

expression tree over 2) by performing the following

method,

We will make a table that has a CPF join ex-

pression tree over each component of the database

schemes at all nodes. Proceed up the given join

expression tree by beginning at the leaves, Since

each leaf is the CPF join expression tree over itself,

put all leaves into the table. Then visit an inter-

nal node, say 2,4, whose children have been visited.

Let L and 7? be the left and right children of U

respectively. Since U is the union of L and 7?, each

component C of U is either a component of L, a

component of 7?, or the union of a set I’ consisting

of some components of L and some components of

%2. Since both children have been visited, in the

former two cases the table must have a CPF join

expression tree over C by the inductive hypothesis.

In the last case create a CPF join expression tree

over C by performing the following procedure, and

put the tree into the table.

1

2

3

4

5

delete from I’ an arbitrary database scheme X

and let 2’ be the CPF join expression tree

over X in the table;

while r is not empty do begin

delete from r such a database scheme W

that X U W is connected;

make a new node X U W whose left and

right subtrees are respectively T and the

join expression tree over W in the table;

let T be the tree at rooted the new node

and set X to X U W;

end

In Step 1 we set X to a connected database scheme

arbitrarily chosen from I’. In the while-loop we

enlarge A’ by repeatedly adding a database scheme

in I’ to X and make a CPF join expression tree

denoted T over X. In Step 3 we can always find

such a database scheme W that XUW is connected,

otherwise U’, that is C, cannot be connected. By

induction we see that after Step 5 T becomes a CPF

join expression tree over X. When the procedure

terminates X becomes Ur, which implies that T is

a CPF join expression tree over UI’ (= C).

After the root is processed a CPF join expression

tree over D is put into the table, because ‘D is

connected and is the only one component in D.

❑

Example 5: Let TI be the join expression tree

presented in Figure 1. Algorithm 1 produces a CPF

join expression tree from T1 as follows;

●

●

●

First all leaves in Tl, {ABC}, {iYFG}, {C’DE}

and {GHA}, are put into the table.

Then intermediate nodes in T1, {ABC, EFG}

and {CD13, GHA}, are visited. {ABC, EI’G}

has two components, {ABC} and {EFG},

which have been already put in the table. Sim-

ilarly the two components of {CDE, GHA},

{CDE} and {GHA}, have also been registered

in the table. Thus no new components are

found, and therefore no join expression trees

are put into the table at this point.

Finally the root of T1 is visited. The root

{ABC, CDE, EFG, GHA} is the unique com-

ponent of itself, and it is the union of the

set 17 = {{ABC}, {CDE}, {EFG}, {GHA}},

where {ABC} and {EFG} are components of

the left child of the root and {C DE} and

{GHA} are components of the right child of

the root. Subsequently Steps 1~5 are invoked.

Steps 1 and 3 may have many choices to se-

lect a database scheme from 17. Because of this

non-deterministic nature we can produce 16 dif-

ferent CPF join expression trees. Suppose that

at Step 1 we select {ABC} from I’, and at Step

3 we select {CDE},{E.FG}, and {GHA} in or-

der. Then we have the CPF join expression

shown in Figure 2. ❑

{ABC, Cx, GHA}

tree

{ABC} {CDE}

Figure 2: A join expression tree produced from the

tree in Figure 1 by Algorithm 1

373



Algorithm 2: Given a CPF join expression tree

over a connected database scheme D, output a

program P for computing M D where D is an

arbitrary database over D.

Initialize P to be an empty program. First visit

all leaves. When we visit a leaf {V}, attach R(V)

to the leaf. Next let S be the set of the root and

all internal nodes each of which is the right child

of its parent. Visit S in some bottom up order;

that is, when we visit V E S we must have visited

all nodes in S that belong to the subtree rooted

at V. From V go down the left branch until a

leaf is reached, and let V. be the leaf node (See

Figure 3). Let YO,VI, . . ., Vm = V be the sequence

of nodes appearing on the branch from V. to Y.

Let Wi (1 s i s n) be the right child of V;. In the

procedure below, we append some st atements to P,

and then we attach R(V) to Y. Since VO and Wi

have been already visited, they have been attached

relation schemes I?(VO) and R(Wi) respectively,

When we append a statement to Pin the procedure

below, we compute the value of the relation scheme

variable in the head. For example if we append

“R(V) := R(V) M R(W)” to P, we set V to

Vuw.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

create a new relation scheme variable named V

and set R(V) to R(VO);

for each i := 1 to n do begin

let7be{TVj \l~j<i, Wjfl Wi~V};

if V n Wi # @ then begin

for each W <$ do

append “R(V) := R(V) N R(W)” to P;

append “R(V) := R.(V) M .R(Wi)” to P;

end

else begin

crest e a new relation scheme variable

named F;

append ‘(R(F) := T(U7)”VR(V)” to P;

for each W c -T do

append “R(F) := R(F) N R(W)” to P;

append “R(F) := Z(vuWi)n(uX)~(I?)” to p;

append “R(F) := R(F)M .R(Wi)” to P;

append “R(V) := R(V) M R(F)” to P;

end

end

for each Wi ~ V do

Av,, = v

w,,

/’
v R(W.)

w,

v R(W,)

o WI

R(vo) R(wl)

Figure 3:

append “R(V) := R(V) M R(Wi)” to P;

18 attach R(V) to V;

If P is applied to an actual database D, R(V) will

be proved to compute M D [v] in the final st atement

appended by Steps 1~18. Since V. and Wj(l ~ j ~

n) have been visited before V, R(VO) and R(Wj)

are respectively M D [Vo] and M D [Wj]. Thus

the join of R(VO), R(WI), . . . . R(W~) gives ~

D[Y], but the statements generated by Steps 1-v18

compute R(V) from R(VO), R(Wl), . . . . R(Wn)

in a rather complicated manner. This complex

technique is crucial in order to bound the size of the

relation computed in the head of each statement

in the following sense. Let TI be an arbitrary

join expression tree from which the given CPF join

expression tree can be created by Algorithm 1. For

any statement in P there exists a database scheme

U in T’l such that the size of the relation in the head

of the statement is less than or equal to I M I)[U] 1.

❑

Example 6: Suppose that we apply Algorithm

2 to the CPF join expression tree Tz in Figure

2. Algorithm 2 first initializes P to be an empty

program. Then Algorithm 2 visits all leaves and

attaches R(V) to a leaf {V}. See Figure 4. Then

Algorithm 2 visits the root, because every internal

node is the left child of its parent. Subsequently

Algorithm 2 performs Steps 1~18. Step 1 creates

a new relation scheme variable V and sets R(V)

to R(A.BC). Then the outer for-loop is executed

three times. When i = 1, WI = C’DE and .F is

empty at Step 3. Since V n WI # #, the procedure

goes through Steps 5 and 6. Step 5 does nothing

‘2-71.



because F = ~. Step 6 appends

R(V) := R(ABC) X R(CDE)

to P. V is still ABC. Next when i = 2, W2 is

EFG and T is {CDE} in step 3. Since V n W2 =
#, the procedure goes through Steps 9w14. Step

9 generates a new relation scheme variable F and

Steps 10N14 append the following statements to P

in order.

R(F) := TCR(V)

R(F) := R(F) ix R(CDE)

R(F) := zc~~(F)

R(F) := R(F)M R(EFG)

R(V) := R(V) M R(F)

V is ABCE at this point. When i = 3, W3 =

GHA. In step 3 ~ is {EFG}. Since V n W3 # rj,

the procedure goes through steps 5 and 6. Steps 5

and 6 append the following statements to P.

R(V) := R(V) M R(EFG)

R(V) := R(V)M R(GHA)

V is ABCEFG at this point. The procedure leaves

the outer for-loop. Step 17 appends the following

two statements for CDE and GHA that are not

included in V.

R(V) := R(V) M R(CDE)

R(V) := R(V) M R(GHA)

Now Algorithm 2 terminates, and we obtain P. If

we apply P to the database D given in Example 3,

cost(P(D)) is less than 2. 104k. •!

We present the following two main theorems.

Their complete proofs will be given in the full

version of this paper.

{ABC, CDE, EFG, GHA)

{ABC, CDE, EFG}

-(ABc71

Figure 4: Applying Algorithm 2 to the join

expression tree in Figure 2

Theorem 1: Suppose that Algorithm 2 derives a

program P from a CPF join expression tree over

a connected database D. If we apply P to a

database D over D, P(D) computes M D in the

last statement.

Theorem 2: Let 2’1 be a join expression tree over

a connected database scheme D. Suppose that

Algorithm 1 creates a CPF join expression tree T2

over D from T1, and Algorithm 2 derives a program

P over D from T2. Then for an arbitrary database

D over D such that M D # #,

cost(P(D)) < ~(a + 5) x cost(T’l(D)),

where a is the number of attributes in D and ~ is

the number of relation schemes in D.

Proof of Theorem 1: (Sketch) We employ the

not ations used in Algorithm 2 and Figure 3.

Suppose that we apply P to D while P is being

generated. Precisely when we visit each leaf V =

{V} and attach R(V) to it, we initialize R(V) to

be D[{V}](=M D[V]). Next when we visit internal

nodes and generate stat ements, we evaluate each

statement when it is created.

Suppose that we visit a node V in 5, where S

is defined to be the set of the root and all internal

nodes each of which is the right child of its parent.

Then Steps 1 N 18 will append statements to P.

Suppose that we have executed all those statements

generated while visiting V. We will prove that

R(V) =M D[V].

This implies that if V is the root, V is equal to D,

and therefore R(V) becomes M D[D](=M D). We

will prove the above claim by an induction on the

number of nodes in S visited.

When we visit V, which is displayed in Figure 3,

we have already had

R(VO) =M DIVO] and

R(Wj) =W 11[~~] for 1 S j S n,

because V. is a leaf, and ?Vj is a leaf or an internal

node that has been already visited.

Let R(Vi) denote the relation R(V) after the

outer for-loop (Steps 2*16) has been executed i-

times. We will show the following properties;

‘)7C



1. R(vi) = 7rvz(MD[v;])

2.WhflW~&Vzforl~h<j~ i.

3.V;-~~V;fOrl~j~n.

The proof of the above properties 1, 2 and 3 is an

induction on i. When z = 1 the proof is trivial.

When i >1 we can prove the following properties,

though we omit the proof.

Throughout Step 5

R(V) = XV(W -D[l’’;-~]), V ~ V2_~ U (lJ.T’).

After Step 6

R(V~) = 71_V,(M D[l’’;]), V; = V~-~ U (lJ.F).

After Step 10

R(F) = ZF(~ D[~;_l]), F = (U%) n vi-l.

Throughout Step 11

R(F) = ~F(M D[~;_l]), F ~ UT.

After Step 12

R(F) = ~F(W DIV;_l]), F = (Vi_l U W~) fl (U~).

After Step 13

R.(F) = ZF(M D[Vi]), F = (Vi-l U w;) n (U~).

After Step 14

T1 ==+ T2

L/ (~ c)

A Vi

c%?

vp_l

, \

Figure 5: Sequence of nodes Vp, . . . . Vq in T2 is

generated from a component C of a node U in T1

by Algorithm 1

are the left and right children of U respectively, and

the subsequence VP, . . . . Vq is generated from I’ by

Steps 1N5 in Algorithm 1 (see Figure 5). Note that

Vq is equal to C.

We will first prove the following claim.

Claim A: Throughout the outer for-loop

A!(V;) = Tvz(~ D[Vi]), Vi = V~-I U (W; n (Uf)). (Steps 2----16) is executed for p < i < q,

\12(V)l and IR(F)I are bounded by I M D[L]\

We can show the following equalities, though we

omit the proof.

Throughout Step 17

R(v) = 7rv(M D[v]), v ~ Uv.
After Step 17

R(v) =~ D[v],

❑

Proof of Theorem 2: In this proof we employ

the not ations used in Algorithm 1 and 2. We also

refer all facts presented in the proof of Theorem 1.

Let V be the root of Tz or an arbitrary node that

is the right child of its parent. Let Vo, VI, . . . . Vn =

V be the sequence of nodes in Tz defined in Al-

gorithm 2. Since T2 is created from T1 by Algo-

rithm 1, observe that the sequence VI, . . . . Vn = V

is divided into sub-sequences each of which, say

v . . . , Vq (1 ~ p < q < n), is generated by Al-

g~~ithm 1 when we visit an internal node ZJ in TI.

Precisely speaking, 2.4 has a component C that is

the union of a set I’ consisting of some components

in L and some components in %3, where C and 72

or I N D[7?]\.

Note that the sequence Vp, . . . . Vq is generated

from 17 = {VP-l, WP, . . . ,Wq} by Algorithm 1.

Each element in r is either a component of L or

a component of 7?. In what follows we assume that

Vp_l is a component selected from L. The other

case that VP-I is a component of ‘R can be proved

similarly. Note that for p s i < q

Vi= Vp-~UWp U... UVi’Vi.

Let Li (l?i ) be the union of all elements in

{VP-I, W,, . . . . ~i} that are components of L (%2);

that is,

L; = Vp_~U

(U{wj I p < j S i,Wj is a component of L}).

7G = U{l’Vj I p < j S i,~j is a component of 7?}.

Since Vi is equal to J& U 7?+, we have the following

equality;

~ D[vi] = (~ D[.q) ~ (~ D[7G]).

Then we will show the following inequalities;

376



Ifx ~ Uci,
17r~MD[v,]/ < [MlD[q < / ~ D[ql,
If X ~ U%?;,

h ~ ~[1’i]l < I ~ ~[%]1 < I w D[R]].

We will show the former one. The latter can be

proved similarly. / xx M .D[vi] / < IM D[L;] 1,

because we can easily prove the following general

inequality;

17r~(R(Y) N R(Z))j < /_R(Y)/ ifX ~ Y.

Now we will prove IN D[Zi] I s ltx D[.C] /. Let

{2,,..., Xm} be the set of all components in .C.

Since Xt (1 <1 s m) share no common attributes

with each other we have

I MDIL]I= I Nll[xl]l x . ..X / MD[xm]l.

We have assumed that N D # ~, which implies

I w D[x~]l ~ 1. Since JCi is a set of some

components of 1, say {X~l, . . . . A&}, I M .DIL~]l

is equal to I M DIXil]l x . . . x I M D[xi, ]/, and

therefore we have I M D[Li] / s 1~ D[C] /.

As we have seen in the proof of Theorem 1, in

the i-th execution of the outer for-loop the values

of R(V) and R(F) change as follows;

Throughout Step 5

R(V) = TV(M D[_Vi_~]),V ~ Vi-l U (UY).

After Step 6

R(vi) = 7rvi(w D[v; ]), v; = v~-~ u (uY).
Throughout Steps 10-12

R(F) = ~li’(~ D[vi-l]), F ~ UT.

After Step 13

R(F) = ~J?(~ D[~i]), F ~ U~.

After Step 14

-R(Vi) = ‘TV, (M D[V~]), Vi = Vi-l U (W~ n (UY)).

Recall that -R(Vi) denote the value of R(V) after

the out er for-loop is executed i-times. Now we will

show the following properties on Uf;

U3 z U7?i-1 if~~ is a component of.C, and

U3 ~ U.Ci-l if IV2 is a component of 7?.

Observe that for any Wj in .F we have Wj n Wi #

~. Since Wj = U~j and Wi = I/Vi, Wj and

Wi have some common at tribut es.

component of L, Wj is a component

is not a subset of VP–l, because any

If W~isa

of X! and it

two distinct

components of f, do not share common attributes.

Thus WJ = UWj ~ U~i-l, and therefore j ~ i – 1,

U3 ~ U’Ri-l . Now we consider the case when

W, is a component of 7?. If j < p, Wj is a

subset of VP-I. Since VP-l is a subset of Li-l,

Wj = UWj ~ U~p_l ~ ULi-l . If j ~ p, Wj must

be a component of C, because Wj and Wi have

some common at tribut es. Thus U> ~ U&_l.

Next we show by an induction on i (p S i S q)

that

Vi ~ ULi.

When i = p, we have VP_l C UVp_l and VP_l ~

Li. When i > p, fist suppose that Vi-l n Wi # ~,

which implies that (Uti) fl (UWi) # #, because

Vi_l ~ U~~_l by the inductive hypothesis. Since

Wi and Zi have some common attributes, Wi must

be a component of 7?. Thus from the properties on

UY we have U$ C ULi-l. Since Vi-l n Wi # ~,

we go through Steps 5 and 6, and after Step 6 we

have Vi = Vi-l U (Uy). Therefore Vi ~ U~~-l.

Now suppose that Vi_l n W; = # at Step 4. Then

we go through Steps 10w I4, and after Step 14 we

have V; = V;_l U (Wi n U~). By the inductive

hypothesis Vz_l ~ Uti_I. If ?Vi is a component of

Z, recall that Wi = UW~, and therefore Vi ~ ULi.

If Wj is a component of 7?, by the properties on

U~ we have U~ z U.&-l, and therefore Vi ~ U~i.

Consequently we have the following facts;

Throughout Step 5

R(v) = 7TV(M ll[v~-~]), v g LMt-l.
After Step 6

R(vi) = TV,(M D[vi]), vi g L&.
Throughout Steps 10N12

R(F) = XF(~ D[~~_l]), F ~ U~~-l (or U ~i-~).

After Step 13

R(F) = ??F(w D[~i]), F ~ U~i (or U ~i).

After Step 14

_R(Vi) = TV, (N .D[V~]), Vi ~ UCi.

Since we have already proved that

/~X ~ D[l’i]l ~ I ~ D[L]\ ifX C U& and

1~~ ~ll[~i)i < I KD[7?]I ifX ~ U’R~,

Claim A holds.

Next we will show the following claim.

377



Claim B: If Vg = V, throughout Step 17

/R(V)\ is bounded by ] N D[z-/]].

As we have seen in the proof of Theorem 1,

throughout Step 17 in Algorithm 2 we have

R(V) = TV(N D[Y]), where V ~ UV. Thus

because V = Vg = C, C is a component of ZJ and

ND#@

Finally we will show the following claim.

Claim C: The number of all statements in

P is less than r(a+5), where a is the number

of attributes in 2) and ~ is the number of

relation schemes in D.

We will show that in Algorithm 2 when we visit

a node V, the number of statements appended to

P is less than or equal to a + 5n. Recall that n

is the number of the internal nodes on the branch

from V. to V(= Vn). It is clear that the number

of statements appended by Steps 6, 10, 12, 13, 14

or 17 is less than or equal to 5n. We will show

that the number of statements appended by Steps

5 or 11 is less than or equal to a. Observe that

in each execution of the outer for-loop Steps 5 or

11 append one statement to P for each W in Y,

I?urthermore by Property 2 presented in Theorem

1 for any W in .F all attributes in W – Vi.l are

unique in 3; that is, any attribute in W – Vi_l

does not appear in any other W’ in >. Note

that at least one attribute in W – Vi_l is put

into Vi by Steps 5 or 11, and therefore in the i-

th execution of the outer for-loop the number of

statements generated by Steps 5 or 11 is less than

or equal to the number of attributes in Vi – Vi_l.

Thus the number of all statements appended by

Steps 5 or 11 while V is visited is less than or equal

to the number of at tributes in Vn, and therefore it

is also less or equal to a. Consequently the number

of all statements generated while V is visited is less

than or equal to a + 5n. Observe that the number

of all internal nodes in T2 is equal to ~ – 1. Thus the

number of all statements in P is less than alSl + 5~,

where recall that S is the set of the root and all

internal nodes in T2 each of which is the right child

of its parent. Therefore the number is also less than

r(a+ 5).

From Claims A, B and C we conclude that

cost(p(ll)) < ~(a + 5) x cost(Tl(D)). ❑

4 Discussions

To compute the join of some set of relations we

have employed programs that use joins, semijoins,

and projections. We have shown that a quasi-

optimal program can be derived from a CPF join

expression. This is a novel approach to computing

multiple joins, and there are some interesting open

problems.

Avoiding Cartesian products is one heuristic

commonly used to reduce the search space of join

expressions. We can further restrict the search

space by using linear join expressions. Then the

following question naturally arises;

Among linear and CPF join expressions,

does there exist a join expression from which

we can derive a quasi-optimal program ?

Our method may not be generalized in order to

solve the above question, because Algorithm 1 does

not necessarily produce a linear join expression

tree. Even though we reduce the search space

of join expressions by avoiding Cartesian products

and using linear join expressions, the size of the

space may be exponential in the size of the input

database scheme. Thus it is an important open

question to find a subspace of join expressions such

that its size is polynomial in the size of the database

scheme and in it there exists a join expression from

which a quasi-optimal program can be derived.

Acknowledgements

I would like to thank Jeff Unman for giving me

many insightful examples and suggestions that

motivated me to pursue this work. His comments

on earlier drafts of this paper were invaluable.

References

[1] Beeri, C. R. Fagin, D. Maier and M. Yan-

nakakis [1983]. On the desirability of acyclic

database schemas: J.ACM, 30(3), pp. 479-513.

378



[2] Bernstein, P.A. and N. Goodman [1981], [13] Yannakakis, M. [1981] Algorithms for acyclic

The Power of Natural semijoins: SIAM J. database schemes: Proc. Intl. Conf. on Very

Computing, 10(4), pp. 751-771 Large Data Bases. pp. 82-94

[3] Goodman, N. and O. Shmueli [1984]. The tree

projection theorem and relational query pro-

cessing: Journal of Comp, and Sys. Science,

28(l), pp. 60-79.

[4] Sagiv, Y. and O. Shmueli [1986]. The equiv-

alence of solving queries and producing tree

projections: Proc, ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Sys-

tems, pp. 160-172.

[5] Selinger, P. G., M.M. Astrahan, D.D. Cham-

berlain, P,A. Lorie and T.G. Price [1979]. Ac-

cess path selection in a relational database

system: Proc. ACM SIGMOD’ ‘htl. Conf. on

Management of Dat a, pp. 23-34

[6] Smith, D.E. and M.R. Genesereth [1985]. Or-

dering conjunctive queries: Artificial Intelli-

gence, 26, pp. 171-215.

[7] Swami, A. and A. Gupta [1988], Optimization

of large join queries: Proc. ACM SIGMOD

Intl. Conf. on Management of Data, pp. 8-17.

[8] Swami, A.[1989]. Optimization of large

queries: combining heuristics and combina-

torial techniques: Proc. ACM SIGMOD Intl.

(lofi,. on Management of Data, pp. 367-376.

[9] Tay, Y.C. [1990]. On the optimality of strate-

gies for multiple joins: Proc. ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of

Database Systems, pp. 124-131. Full version

to appear in J.ACM.

[10] Unman, J.D. [1988] Principles of database and

knowledge-base systems: Volume 1, Computer

Science Press, New York

[11] Unman, J.D. [1989] Principles of database and

knowledge-base systems: Volume 2, Computer

Science Press, New York

[12] Wong, E. and K. Youseffi [1976]. Decomposi-

tion – a strategy for query processing, ACM

Trans. on Database Systems, 1(3), pp. 223-241

379


