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ABSTRACT
In the research field of biology, towards the comprehensive understanding of functions of whole genes, the last few years have experienced an amazing surge of interest in observing expression patterns (behavior) of numerous genes in many various tissues [10]. For the analysis of a flood of those gene expression patterns, data mining techniques for computing clusters and association rules are indispensable. In this paper we present how we have been exploiting current technology to derive biological facts efficiently, and we discuss technical issues to be solved.
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1. Reading Sequences of Genes
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The primary goal of genomics is to understand functions of whole genes. To this end, we first need to know the sequence of each gene and the location of the sequence in a chromosome. Reading the human DNA sequence therefore is a preliminary but important step, and the completion of the first finished human sequence is now scheduled for 2003. While sequencing human genome, biologists have started accumulating fragments of human genes, which is called expression sequence tags (EST, for short) for the last several years. ESTs are fragments of genes observed by different researchers for various purpose, and hence different ESTs often come from the same position in a chromosome. Reconstruction of the original sequence from the set of fragments has been performed with the help of computer programs. The Web site named “Unigene” maintained by NCBI of NIH currently identifies about sixty thousand genes. Since it is expected that the number of distinct human genes is less than one hundred thousand, we already know the sequences of more than half of genes. This progress makes it possible to proceed to the investigation of function of numerous genes in a comprehensive manner. 

2. Observing Expression Patterns of Genes in Various Tissues
To understand the function of a gene, in the literature of biology, it has been taken the approach of investigating behavior (expression) of a small number of genes in tissues of interest. In 1991, Okubo et al. started a holoscopic approach of collecting the sequences of genes expressed in various tissues [11]. This information has been presenting a hint on the collection of genes that constitute a specific tissue. Recently, the advent of new technology such as microarray [10] has driven biologists to study gene expression of an immense number genes in various tissues at once. For instance, Figure 1 presents a table of mouse gene expression patterns, and each row shows how one gene is observed various tissues shown in Figure 2 and 3. 

In order to observe the expression of a gene, we use the technology called polymerase chain reaction (PCR, for short) for amplifying a very small amount of a gene, and thereby detecting the existence of the gene. PCR repeats the step of doubling the instances of a gene. Since the number of the doubling step of PCR could be arbitrary, it is rather difficult to measure the exact number of original instances of a gene in a tissue. Fortunately [image: image2.png]however if we amplify the same gene of different tissues under the same condition simultaneously, the final numbers of genes in several tissues reflect the ratio of the original numbers of genes in those tissues. This is a basic idea of how we can observe the expression patterns of genes.

For instance, Figure 1 shows the ratio of gene “MB00001” is 17.3%, 32.8%, 5.0%, 22.7%, and 22.2% in brain, heart, lung, kidney, and testis, respectively. We also have observed the ratio of numbers in five brain tissues that are olfact bulb, hippo, cortex, corpus, and cerebellum in Figure 3. We also obtained the ratio of expression patterns in the whole brain chronologically from embryo (10.5, 13.5, and 17.5 days in Figure 2) to post-natal period (1, 5, 7, 14, 21, and 91 days).
3. Clustering Genes via Expression Patterns
A set of genes are expected to share common roles in cellular processes. Members in such a group may be observed in the same tissues at the same time, and in this case their expression patterns would be similar. Thus clustering genes with similar patterns of expression would provide substantial insight on the identification of real groups of genes that collaborate with each other. On the other hand,  we may also be able to find a gene of outlier that does not work with other genes and stays away from any cluster of genes.

We first define the similarity of expression  patterns, and then the tightness of a cluster.

3.1 Similarity between Genes and Evaluation Measures on Clusters
The expression pattern of a gene in Figure 1 can be seen as a vector of nineteen real numbers. To evaluate the similarity between two points, various measures such as the dot product of two normalized vectors and Euclidean distance are available, and  we will employ the Euclidean distance, which is frequently used. Let Rd be the d-dimensional Euclidean space, let x and y be points in Rd, and || x – y || denote the Euclidean distance between x and y. 
To evaluate the tightness of a set C of points, the following measures are common: 
· The diameter of C is   

max{ || x – y ||  |  x and y are points in C }.

· The intra-class variance of C is

(1 / |C| )  xin C || x – c(C) ||2,
where |C| denotes the number of points in C, and
c(C) is the centroid (mean) of C; that is, c(C) =  xin C  x .
The choice of the above measures depends on each application. The diameter presents a rough estimate of the quality of a cluster. But if we need to seriously consider the distribution of points in a cluster, we should use the intra-class variance instead of the diameter. In our analysis of gene expression patterns, we use the intra-class variance.

Intuitively, a cluster is considered as a good one if its diameter (or its intra-class variance) is small. This goal can be easily realized by dividing a cluster with a large diameter into smaller sub-clusters. In the extreme case, to minimize the diameter of each cluster, we can completely partitioning a cluster into sub-clusters of size one, which however does not meet the purpose of clustering points to similar groups that contain substantial numbers of points.

3.2 k-clustering

Let S be the given set of n points in the d-dimensional space. A k-clustering of S is a partition of S into k disjoint nonempty subsets C1, …, Ck, called clusters. Fixing the number k of clusters can avoid dividing the given set S into numerous number of small clusters. If we can determine the number of clusters before partitioning the given set, we should consider to generate a k-clustering.

To measure the quality of k-clustering, the maximum value of diameters (or intra-class variances) of all clusters is frequently used. We are then interested in the optimization problem of finding the k-clustering that minimizes the maximum value of diameters (or the maximum intra-class variance) of all clusters.

The diameter problem is well-studied in the literature. If we consider k as a variable, the problem is NP-hard [5]

 REF _Ref451452090 \r [8]. Let n be the number of points to be clustered. Even if we allow the diameter to be within a small constant factor of the optimal diameter, the problem remains NP-hard, and  Feder and Greene show the NP-hardness for < 1.969 [4]. Fortunately, an approximation factor of 2 has in fact been achieved, and Gonzalez [6] presents an elegant algorithm that uses the furthest point heuristic and runs in time O(nk). Feder and Greene [4] gave an improved version of Gonzalez’s algorithm that runs in optimal O(n log k) time.

On the other hand, the problem of minimizing the maximum value of intra-class variances of all clusters is hard to solve. Inaba et al. presents an O(n (d+2)k+1)-time algorithm [7], where d is the number of dimensions. This means that even if k=2, finding the optimal k-clustering is costly for higher dimensions. They also presents a randomized algorithm [7] that, roughly speaking, computes an -approximate 2-clustering in O(n(1/)d) time, which is applicable in practice.

Although the k-clustering problem has been well studied, we have not taken the approach of generating k-clustering, because we cannot determine the appropriate number of clusters beforehand in the clustering analysis of gene expression patterns, because the number of clusters itself is interesting.

3.3 Maximum Intra-class Variance Threshold
We rather want to generate tight clusters such that their diameters (or intra-class variances) do not exceed a given threshold. We are then interested in finding an optimal clustering that meets this constraint and minimizes the number of clusters. Feder and Greene [4] consider this problem for the case of diameter, and they present an O(n log n)-time approximation algorithm whose approximation factor is 2. In the case of intra-class variance, however, there have not been done much theoretical work, to the best of our knowledge.

In the analysis of gene expression patterns, we want to obtain tight clusters with smaller intra-class variance, though there have not been done much theoretical work. To obtain a feasible solution in a limited amount of computation time, we have tried a hierarchical clustering the key aspects of which are summarized as follows:
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We first divide points into two clusters by the randomized 2-clustering algorithm [7], because of its efficiency and accuracy. We then repeat applying this process to sub-clusters, and we create a dendrogram in a top-down manner. 
· To reduce the intra-class variance in each cluster as smaller as possible, whenever we divide a cluster into two, we redistribute every point to the cluster of its nearest centroid. 

· We provide a maximum threshold for intra-class variance, and we stop partitioning a cluster whose intra-class variance does not exceed the threshold.
Another approach of hierarchical clustering is a bottom-up strategy that repeats the generation of a new cluster by joining two neighboring clusters in a greedy manner. This approach was taken by Brown and Bostein for clustering yeast genes [3]. Although we have not done much experimental tests to see the difference between our top-down strategy and the bottom-up one, we do not use the bottom-up strategy because it inherently searches a solution in a local manner, and thereby ignoring global distribution of data.

3.4 Examples of Clusters

We now present an example of clustering gene expression patterns in Figure 1. Figure 4 illustrates our graphical representation of a vector. The width of a band scales to the number of each coordinate in a vector. Figure 5 displays one thousand vectors before the application of clustering, while Figure 6 presents the result of the application of our clustering method. In Figure 6, we can see the overall effect of the clustering. 
Figure 7 and 8 display two clusters in Figure 6. The cluster in Figure 7 contains expression patterns of four genes. The right two genes have their own names and are known to code ribosomal proteins, while the function of the left two genes are  unknown but might be similar to the right two genes. Thus the left two genes are highly expected to code ribosomal proteins. Figure 8 shows another cluster in which three genes among four are known to code myelin, and thereby indicating the other one to code myelin. 

In our database, functions of about 20% of all the one thousand genes are known. Genes with similar function should be clustered into the same group. We can observe this property when we generate tight clusters whose intra-class variance is small.

It is said that functions of about 10% of 60,000 genes in the Unigene database are known to some extent. To investigate the function of other 90% of genes, clustering is expected to present useful insight.
In Figure 9, each dot represents a cluster. The x-coordinate shows the number of points in the cluster, while the y-coordinate gives the intra-class variance of the cluster. We have performed clustering by setting the maximum intra-class variance to 500. We obtain 159 isolated clusters each of which contains just one point. Since the intra-class variance of a cluster of one point is zero, dots of all those 159 clusters are put together into one dot in Figure 9. 

We can regard those 159 genes as outliers that do not belong to any other clusters. But currently we have just looked at the expression patterns of typical one thousand genes. In near future we plan to see the expression patterns of more genes, and we may find genes neighboring to such outliers. 

4. Finding Association between a Gene and Multiple Transcription Factors
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We now move to another topic of genomics. Transcribing a gene (mRNA) is regulated by multiple transcription factors that are proteins decoded from mRNAs. The process of transcribing mRNAs cascades. Each individual tissue would have a unique cascade of transcription processes that build the tissue, and understanding the cascade for each tissue is of great interest. To this end, finding the combination of transcription factors for a gene of interest is crucial. 
It is natural to assume that a target gene and a combination of genes encoding transcription factors for the target should be observed in the same tissues simultaneously. To find such a combination of transcription factors, we formulate this as an association rule finding problem [1]. 

We regard all tissues as baskets, and we treat all genes as items. We want to find association rules of the form:

{ gene1, gene2, …, genek } => target gene,

where gene1, gene2, …, and genek encode transcription factors.
The expression of the target gene and the expression of all in { gene1, gene2, …, genek } should be strongly correlated; that is, we ought to look at the negative implication of the rule that when a tissue lacks some of { gene1, gene2, …, genek }, the target gene cannot be transcribed, and hence the tissue should also lack the target gene. To measure the significance of the correlation between { gene1, gene2, …, genek } and the target gene, evaluation criteria such as support and confidence [1] are not satisfactory, because those criteria do not consider the negative implication. We instead should employ statistical measurements such as the chi-squared value and the correlation coefficient. 

Brin et al. study enumerating all the association rules whose chi-squared values are no less than a threshold [2]. Morishita and Nakaya propose a parallel branch-and-bound graph search algorithm for computing the optimal association rule that maximizes the chi-squared value [9]. 
We are now gathering the expression patterns of many genes encoding transcription factors, and we will report the result elsewhere.

5. Further Work
We have demonstrated that data mining techniques such as clustering and association rule finding would be useful to the analysis of expression patterns of genes. 

The rapid progress of observation tools will accelerate the construction of huge databases that store expression patterns of about one hundred thousand genes in many tissues – say hundreds of various human tissues. We then need to develop an efficient technique for clustering points in hundreds dimensional space into very compact groups, which is a challenging problem. 
In the case of association rule finding problem, we need to efficiently select a combination of several genes from one hundred thousand candidates that are highly correlated with the target gene. 
Furthermore, in the analysis of genes of budding yeast, it has been observed how expression pattern of a gene change chronologically [3]. In this case, we would need data mining techniques for handling time series. The rapid growth of expression patterns will continue to present some challenging technical problems to data mining research.
In near future, we plan to open to the public our experimental results through the following URL:

http://bodymap.ims.u-tokyo.ac.jp/.
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Figure 1: Gene expression patterns of mouse genes in various tissues
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Figure 3: Five brain tissues of adult mouse 



Figure 2: Brain in embryo



Figure 4: Graphical 

Representation of expression pattern 



Figure 6: After clustering genes in Figure 5
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Figure 5: Graphical representation of expression patterns of one thousand mouse genes in Figure 1



Figure 8: Clusters of genes coding myelin

intra-class variance = 128



Figure 7: Cluster of genes coding ribosomal proteins

intra-class variance =209



Figure 9:  Summary of all clusters
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Sheet1

		Identifier		tissues in organs										chronological  expression  patterns  in  all  tisuues  in  brain																		tissues in brain

														embryo						post-natal

				brain		heart		lung		kidney		testis		10.5d.		13.5d.		17.5d.		1 d.		5 d.		7 d.		14 d.		21 d.		91 d.		olfact		hippo		cortex		corpus		cereb.

		MB00001		17.3		32.8		5.0		22.7		22.2		5.6		8.9		11.2		9.5		12.7		12.3		8.4		12.0		6.7		38.5		33.2		9.4		5.7		13.2

		MB00002		46.5		15.2		5.0		19.0		14.3		5.4		7.2		7.0		10.7		12.5		10.3		10.0		15.4		8.9		42.5		20.2		11.5		4.7		21.1

		MB00004		11.5		55.2		4.5		26.5		2.3		5.9		8.8		8.5		10.3		10.9		9.1		8.1		15.0		12.6		58.5		14.8		9.6		4.8		12.3

		MB00005		15.1		36.0		17.8		22.9		8.2		9.7		11.5		7.3		12.4		13.0		10.9		6.7		10.5		5.0		32.3		18.3		5.6		16.1		27.6

		MB00006		61.9		21.6		7.9		4.6		4.0		2.9		13.4		10.3		11.7		10.1		13.1		10.3		10.0		8.4		45.9		29.1		4.3		9.4		11.3

		MB00007		27.0		27.3		15.3		14.8		15.6		4.9		7.7		3.0		10.6		13.6		10.8		13.7		12.9		9.4		20.7		19.0		15.0		27.9		17.3

		MB00009		0.0		0.0		100.0		0.0		0.0		0.0		4.8		7.4		7.5		7.3		17.4		10.1		24.1		14.2		0.0		100.0		0.0		0.0		0.0

		MB00010		82.9		17.1		0.0		0.0		0.0		0.0		5.1		8.2		16.5		18.8		16.8		5.1		6.8		3.9		41.4		15.5		15.2		0.0		27.9

		MB00011		100.0		0.0		0.0		0.0		0.0		0.0		6.9		9.9		12.1		12.4		9.5		8.9		16.5		11.5		44.0		29.3		9.9		5.4		11.5

		MB00012		39.1		17.6		3.1		27.0		13.1		5.8		8.8		9.2		11.7		13.4		12.3		7.7		12.2		5.5		45.2		31.8		0.0		0.0		23.1
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