
1 Introduction

Recent progress in technologies for data input have

made it easier for �nance and retail organizations to

collect massive amounts of data and to store them on

disk at a low cost. Such organizations are interested

in extracting from these huge databases unknown

information that inspires new marketing strategies. In

the database and AI communities, there has been a

growing interest in e�cient discovery of interesting

rules, which is beyond the power of current database

functions.

Association Rules

Given a database universal relation, we consider the

association rule that if a tuple meets a condition C1,

then it also satis�es another condition C2 with a certain

probability (called a con�dence in this paper). We

will denote such an association rule (or rule, for short)

between the presumptive condition C1 and the objective

condition C2 by C1 ) C2. Ideally we expect to have

only rules with 100% con�dence, but in the case of

business databases that re
ect our loosely controlled

world, rules whose con�dences are less than 100%

but greater than a speci�ed threshold, say 50%, are

signi�cant. We call such rules con�dent.

In their pioneering work [1], Agrawal, Imielinski, and

Swami investigated how to �nd all con�dent rules. They

focused on rules with conditions that are conjunctions

of (A = yes), where A is a Boolean attribute, and

presented an e�cient algorithm. They have applied

the algorithm to basket-data-type retail transactions in

order to derive interesting associations between items,

such as (Pizza = yes)^(Coke = yes) ) (Potato =

yes): Improved versions of the algorithm have also been

reported [2, 14].

One-Dimensional Association Rules

In addition to Boolean attributes, databases in the real

world usually have numeric attributes such as age and

the balance of account in a database of bank customers.

Thus, it is also important to �nd association rules for

numeric attributes. In [8], we considered the problem of

�nding simple rules of the form (Balance 2 [v1; v2]) )
(CardLoan = yes); which expresses the fact that

customers whose balances fall within a range between

v1 and v2 are likely to take out credit card loans. If the

con�dence of the range exceeds a given threshold, the

range is called con�dent. Let the support of the range

be the number of tuples in the range, and let the range

be called ample if the support of the range in the rule

exceeds a given threshold.

We want to compute a rule associated with a range

that is both con�dent and ample. Since there could exist

many con�dent and ample ranges, we are interested

in �nding the con�dent range with the maximum

support (called the optimized-support range), and the

ample range with the maximum con�dence (called the

optimized-con�dence range). Fukuda et al. [8] presented

e�cient algorithms for computing those optimized

ranges that e�ectively represent relationship between a

numeric attribute and a Boolean one.

Two-Dimensional Association Rules

In the real world, binary associations between two

attributes are not enough to describe the characteristics

of a data set, and we therefore often want to �nd a rule

for more than two attributes. In [7], we considered the

problem of �nding two-dimensional association rules)

that represent the dependence on a pair of numeric

attributes of the probability that an objective condition

(corresponding to a Boolean attribute) will be met.

For each tuple t, let t[A] and t[B] be its values for

two numeric attributes; for example, t[A] = \Age of

a customer t" and t[B] = \Balance of t". Then, t is

mapped to a point (t[A]; t[B]) in an Euclidean plane

E2. For a region P in E2, we say that a tuple t meets

the condition \(Age;Balance) 2 P" if t is mapped

to a point in P . We want to �nd a rule of the form

((A;B) 2 P )) C such as

((Age;Balance) 2 P )) (CardLoan = yes):

In practice, we consider a huge database containing

millions of tuples, and hence we have to handle millions

of points, which may occupy much more space than the

available main memory. To avoid dealing with such a

large number of points, we discretize the problem; that

is, we distribute the values for each numeric attribute

into N equal-sized buckets. We divide the Euclidean

plane into N � N pixels (unit squares), and map each

tuple t to the pixel containing the point (t[A]; t[B]).

Let M denote the total number of records in the given

database. We expect that the average number of records

mapped to one pixel is not too small nor too large. In

practice we assume that
3
p
M � N �

p
M , thereby

ensuring that the average number of records mapped

to one pixel ranges from 1 to
3
p
M . We use a union

of pixels as the region of a two-dimensional association

rule. Con�dent regions, ample regions, and optimized-

con�dence/-support regions can be naturally de�ned as

in the case of one-dimensional association rules.

The shape of region P is important for obtaining a

good association rule. For instance, if we gather all

the pixels whose con�dence is above some threshold,

and de�ne P to be the union of these pixels, then P

is a con�dent region with (usually) a high support.

A query system of this type is proposed by Keim et

al. [10]. However, such a region P may consist of many

connected components, often creating an association

rule that is very di�cult to characterize, and whose

validity is consequently hard to see. Therefore, in
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order to obtain a rule that can be stated brie
y or

characterized through visualization, it is required that

P should belong to a class of regions with nice geometric

properties.

X-monotone Regions

In [7] we considered two classes of geometric regions:

rectangular regions, and x-monotone regions. Apte

et al.[3] also report the use of ranges and rectangular

regions in rules for prediction. A region is called x-

monotone if its intersection with any vertical line is

undivided. Computing optimized x-monotone regions is

intractable in general, but we gave an O(N2 logM)-time

approximation algorithms for computing optimized x-

monotone regions. We also presented an O(N3)-

time algorithms for computing the optimized-con�dence

(support) rectangles. Assuming that N �
p
M , the

time complexity of the former algorithm is O(M logM),

and that of the latter algorithm is O(M3=2).

The motivation for the introduction of x-monotone

regions was that various shapes of region can be

represented by x-monotone regions, and the con�dence

(support) of the optimized-con�dence (-support) x-

monotone region is much greater than that of the

optimized-con�dence (-support) rectangle, since any

rectangle is an instance of an x-monotone region.

For various reasons, however, x-monotone regions are

not ideal. One reason is that the boundary of an

x-monotone region tends to be notchy; for instance,

Figure 1(a) illustrates an instance of an optimized-

con�dence x-monotone region. In Section 4, we give the

details of the grid, and we present theoretical analysis on

the shape of the boundary of the optimized-con�dence

x-monotone region.

Another problem is that an optimized x-monotone

region is likely to over�t the training dataset seriously,

and therefore it tends to fail to give a good prediction

on an unseen dataset. In more precise, even if we

create the optimized-con�dence x-monotone region from

a training dataset, the con�dence of the region against

an unseen dataset tends to be worse than the original

con�dence against the training dataset. With regarding

this problem, we present some experimental results in

Section 5.

Main Results

We look for appropriate classes of regions between two

extreme classes, rectangles and x-monotone regions, and

in this paper we propose to use rectilinear regions.

A connected region is called rectilinear if both its

intersection with any vertical line and its intersection

with any horizontal line are always undivided. From

this de�nition, the boundary of a rectilinear region

is never notchy; for instance, Figure 1(b) shows the

optimized-con�dence rectilinear region generated from

the same grid for the x-monotone region in Figure 1(a).

(a) Optimized-con�dence X-monotone Region

(b) Optimized-con�dence Rectilinear Region

Figure 1: Optimized-con�dence Regions

In Section 4 we present a theoretical analysis on this

subject. Furthermore, compared with the case of

x-monotone regions, an optimized rectilinear region

less over�ts a training dataset and provides a better

prediction on an unseen dataset, which is con�rmed by

some experiments in Section 5.

Analyzing real data, we have often observed that com-

puting the optimized triangular region is meaningful,

but unfortunately it becomes time-expensive to �nd the

optimal one in the family of triangular regions. A recti-

linear region can approximate a triangular region, which

is another reason why we design an e�cient algorithm

for computing the optimized rectilinear region.

As in the case of x-monotone regions, the problem

of computing the optimized-con�dence/-support regions

is intractable, but we present O(N3 logM)-time ap-

proximation algorithms in Section 3. Assuming that

N �
p
M , the time complexity of these algorithms is

O(M3=2 logM), which is feasible in practice.

An interesting application of rectilinear regions is

decision-tree making. In [6], we proposed to construct

decision trees in which at each node, to split data

e�ectively into two classes, we use the x-monotone

region that minimizes Quinlan's entropy function. It

is an interesting question whether or not the use of

rectilinear regions in replace of x-monotone regions

might increase the classi�cation accuracy of decision

trees with region splitting, and we will report some

experimental results in the full version of this paper.

Related Work

Interrelation between paired numeric attributes is a ma-

jor research topic in statistics; for example, covariance
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and line estimators are well-known tools for representing

interrelations. However, these tools only show the inter-

relation in an entire data set, and thus cannot extract

a subset of data in which a strong interrelation holds.

Several heuristics using geometric clustering techniques

have been introduced for this purpose [13, 19].

Some other studies deal with numeric attributes and

try to derive rules. Piatetsky-Shapiro [15] investigates

how to sort the values of a numeric attribute, di-

vide the sorted values into approximately equal-sized

ranges, and use only those �xed ranges to derive rules

whose con�dences are almost 100%. Other ranges ex-

cept for the �xed ones are not considered in his frame-

work. Recently Srikant and Agrawal [18] have improved

Piatetsky-Shapiro's method by adding a way of combin-

ing several consecutive ranges into a single range. The

combined range could be the whole range of the numeric

attribute, which produces a trivial rule. To avoid this,

Srikant and Agrawal present an e�cient way of comput-

ing a combined range whose size is at most a threshold

given by the user. Srikant and Agrawal's approach can

generate hypercubes.

Some techniques have been developed for handling

numeric attributes in the context of deriving decision

trees. ID3 [16, 17], CART [5], CDP [1], and SLIQ [11]

subject a numeric attribute to a binary partitioning,

called a guillotine cut, that maximizes the Quinlan's

entropy function [16]. To the best our knowledge,

the idea of splitting a region to maximize the entropy

function has never been seriously exploited except by

the present authors [6].

2 Two-Dimensional Association Rules

Pixel Regions

De�nition 2.1 Let us consider two numeric attributes

A and B. We distribute the values of A and B into

NA and NB equal-sized buckets, respectively. Let us

consider a two-dimensionalNA�NB pixel-grid G, which

consists of NA � NB unit squares called pixels. G(i; j)

is the (i; j)-th pixel, where i and j are called the row

number and column number, respectively. The j-th

column G(�; j) of G is its subset consisting of all pixels

whose column numbers are j. Geometrically, a column

is a vertical stripe.

We use the notation n = NA � NB. In our typical

applications, the ranges of NA and NB are from 20

to 500, and thus n is between 400 and 250; 000. For

simplicity, we assume that NA = NB = N from now

on, although this assumption is not essential.

De�nition 2.2 For a set of pixels, the union of pixels

in it forms a planar region, which we call a pixel region.

A pixel region is rectangular if it is a rectangle. A

pixel region is x-monotone if it is connected and its

intersection with each column is undivided (thus, a

vertical range) or empty. A pixel region is rectilinear if it

is connected, its intersection with each column (vertical

line) is undivided or empty, and its intersection with

each row (horizontal line) is undivided or empty.

Optimized Two-Dimensional Association Rules

We are now in a position to formally de�ne optimized

two-dimensional association rules.

De�nition 2.3 For each tuple t, t[A] and t[B] are

values of the numeric attributes A and B at t. If t[A] is

in the i-th bucket and t[B] is in the j-th bucket in the

respective bucketings, we de�ne f(t) = G(i; j). Then,

we have a mapping f from the set of all tuples to the

grid G.

Let C denote an objective condition. A tuple t is a

success tuple if t satis�es C. For each pixel G(i; j), ui;j
is the number of tuples mapped to G(i; j), and vi;j is

the number of success tuples mapped to G(i; j). Given

a region P , the number of tuples mapped to a pixel in

P ,
P

G(i;j)2P ui;j , is called the support of P , which is

denoted by support(P ).

In this paper, the support of P denotes a number of

tuples rather than a percentage, since we do not want

to declare the base of the percentage each time.

De�nition 2.4 The number of success tuples mapped

to a pixel in P ,
P

G(i;j)2P vi;j , is called the hit of P ,

and is denoted by hit(P ). The ratio of the number of

success tuples to the number of tuples mapped to P ,

that is, hit(P )=support(P ), is called the con�dence of

P , and is denoted by conf(P ).

In order to express an association rule that tuples

mapped to region P also meet condition C with a

probability of conf(P ), we use the following notation:

(A;B) 2 P ) C;

which is called a two-dimensional association rule.

De�nition 2.5 A region is called con�dent (resp. am-

ple) if the con�dence (the support) is at least a given

threshold. We want to �nd a rule associated with a re-

gion that is both con�dent and ample, but there could

be many such regions. An optimized-con�dence rec-

tilinear (resp. x-monotone, rectangular) region is the

ample rectilinear (x-monotone, rectangular) region that

maximizes con�dence. An optimized-support rectilinear

(resp. x-monotone, rectangular) region is the con�dent

rectilinear (x-monotone, rectangular) region that maxi-

mizes support.

If we consider rectangular regions, the optimized-

support (-con�dence) region can be computed in O(N3)
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time [7]. In the case of x-monotone regions, the

optimized-support region and the optimized-con�dence

region are di�cult to compute. Let M denote the total

number of tuples. In [7], Fukuda et al. show that

an O(N3M ) time algorithm exists for computing the

optimized-support (-con�dence) x-monotone region, but

no algorithm running in polynomial time with respect

to N and log M exists unless P = NP . Computing

the optimized rectilinear regions is also di�cult, and

we have the following property similar to the case for

x-monotone regions.

Theorem 2.1 An O(N3M) time algorithm exists for

computing the optimized-support (-con�dence) rectilin-

ear region, but no algorithm running in polynomial time

with respect to N and log M exists unless P = NP .

Proof: See Appendix A.

In the next section, we present an O(N3 logM)-

time approximation algorithm for computing optimized-

support (-con�dence) rectilinear regions.

3 Approximation Algorithms for

Optimized Rectilinear Regions

Hand-Probing Technique

In this section, we brie
y review the \hand-probing"

technique, which Asano et al. [4] invented for image

segmentation and Fukuda et al. [7] modi�ed for

extraction of the optimized x-monotone regions. Here

we also tailor the algorithm to compute the optimized

rectilinear regions.

De�nition 3.1 We map each rectilinear region P to a

stamp point (support(P ); hit(P )) in an Euclidean plane.

Since there are more than 2N rectilinear regions, we

cannot a�ord to generate all stamp points; instead, we

just imagine them. Consider the upper convex hull

of all of the stamp points. A stamp point, say P1 in

Figure 2, associated with the optimized-con�dence (-

support) rectilinear region does not always exist on the

hull. In practice, however, a huge number of points

are fairly densely scattered over the upper hull, and

it is reasonable to assume that we can �nd a point,

say P2 in Figure 2, on the hull that is pretty close to

P1. This convexity assumption, as we call it, motivates

us to create an approximation algorithm for computing

optimized rectilinear regions.

The next question is how to compute a point on

the upper hull. To this end, we employ the hand-

probing technique given by Asano et al. [4]. For

each stamp point on the upper hull, there must exist

a line with a slope � that is tangential to the hull

at this point. This point maximizes y � �x for the

Upper Convex Hull

support

hit

P1

P2

Figure 2: Convexity Assumption

set of stamp points. Accordingly, the corresponding

rectilinear region P maximizes hit(P )���support(P ),
which is

P
G(i;j)2P vi;j � �ui;j .

De�nition 3.2 Let us call vi;j � �ui;j the gain of pixel

G(i; j), and hit(P ) � � � support(P ) the gain of P ,

respectively. Among all the rectilinear regions, the

optimized-gain rectilinear region P maximizes the gain

of P .

In the next subsection, we present an O(N3)-time

algorithm for computing the optimized-gain rectilinear

region in response to a tangent line with slope � .

The hand-probing technique allows us to touch one

point on the upper hull, but that point is not necessarily

the one associated with the optimized-con�dence/-

support rectilinear region. Thus, using the hand-

probing technique, we want to scan the upper convex

hull e�ciently to �nd the optimal point, and we show

that this can be done by using O(logM) tangent lines.

For the tangent line with slope � , we can compute the

optimized-gain rectilinear region P . Note that when �

increases, the con�dence of P increases, and the support

of P decreases monotonically. Thanks to this property,

we can perform a binary search for the optimized-

con�dence/-support rectilinear region as follows:

1. Compute the region P0 for � = 0 and the region P1

for � = 1.

2. Compute P2 for the slope of the line P0P1.

3. Repeat this process until we �nd P 0 and P 00 such

that P 0 and P 00 themselves are identi�ed by a line

whose slope is equal to that of the slope of the line

connecting them.

Figure 3 illustrates this process.

The above binary search seems to look for whole real

numbers. However, since a stamp point has integer

coordinate values, each slope � is a rational number

whose denominator and numerator are positive integers

in [1;M ], and the di�erence of two such distinct rational
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support

hit P

P

P

0

1

2

Figure 3: Binary Search on the Upper Hull

numbers is at least 1=M2. Thus, we can stop the search

if the width of the search range is reduced to 1=M2.

Hence, the binary search terminates in O(logM) search

steps.

Optimized-Gain Rectilinear Regions

Let P be a rectilinear region. Let m1 and m2

respectively denote the indices of the �rst and last

columns. Let s(i) and t(i) denote the indices of the

bottom and the top pixels of the i-th column. Since P

is a rectilinear region, the sequence of top pixels from

left to right, G(i; t(i)) for i = m1; : : : ;m2, increases

monotonically (t(i) � t(j) for m1 � i < j � m2),

decreases monotonically (t(i) � t(j) for m1 � i < j �
m2), or increases monotonically up to some column and

then decreases monotonically. Similarly, the sequence of

bottom pixels, G(i; s(i)) for i = m1; : : : ;m2, increases

monotonically, decreases monotonically, or decreases

monotonically up to some column and then increases

monotonically.

The top picture in Figure 4 illustrates the case in

which the sequence of the top pixels (the top sequence,

for short) and the sequence of the bottom pixels (the

bottom sequence, for short) increase monotonically or

decrease monotonically.

De�nition 3.3 We have four types of rectilinear re-

gion. The region that gets wider from left to right is

named W . The region that slants upward (downward,

resp.) is named U (D). The region that gets narrower

from left to right is named N .

The middle left part of Figure 4 shows the case

in which the top sequence increases monotonically up

to some column and then decreases monotonically,

while the bottom sequence increases monotonically

or decreases monotonically. We have two types of

rectilinear regions: one is a combination of a W -

type sub-rectilinear region and a D-type sub-rectilinear

region, which will be referred as a WD-type region.

The other is a combination of a U -type sub-rectilinear

region and an N -type sub-rectilinear region, which will

be called a UN -type region. The middle right part

of Figure 4 shows the case in which the top sequence

increases or decreases, while the bottom sequence

decreases up to some column and then decreases. We

have two types of rectilinear region: one is WU -type,

and the other is DN -type. The bottom part of Figure

4 shows the case in which the top sequence increases

up to some column and then decreases, while the

bottom sequence decreases until some column and then

increases. We have three types: WDN , WN , and

WUN .

W U D N

W
D U

N
W

U D
N

W D N W N W U N

Figure 4: Rectilinear Regions

Theorem 3.1 Optimized-gain rectilinear regions can

be computed in O(N3) time.

Proof: Let fW (m; [s; t]) denote the gain of the

rectilinear region that maximizes the gain among allW -

type rectilinear regions whose last column is the m-th

one and whose intersection with them-th column ranges

from the s-th pixel to the t-th pixel. Let gi;j denote the

gain of the pixel G(i; j), which is vi;j � �ui;j . Before

computing fW (m; [s; t]), we pre-compute
P

j2[s;t] gm;j,

which will be denoted by gm;[s;t], for m = 1; : : : ; N and

1 � s � t � N . This computation takes O(N3) time.

For m = 1, fW (1; [s; t]) = g1;[s;t]. For m > 1, if s = t,

fW (m; [s; s]) = maxfgm;s; fW (m � 1; [s; s]) + gm;sg.
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Otherwise (s < t), the following recurrence holds:

fW (m; [s; t]) = max

0
@

fW (m� 1; [s; t]) + gm;[s;t]

fW (m; [s+ 1; t]) + gm;s

fW (m; [s; t� 1]) + gm;t

1
A

Next, let fU (m; [s; t]) denote the gain of the rectilinear

region that maximizes the gain among all U or WU

rectilinear regions whose last column is the m-th one

and whose intersection with the m-th column ranges

from the s-th pixel to the t-th pixel. For m = 1,

fU (1; [s; t]) = g1;[s;t]. For m > 1, we pre-compute

maxi�s fW (m� 1; [i; t]) and maxi�s fU (m� 1; [i; t]) for

all s � t, which can be done, in O(N2) time. We have

the following recurrence:

fU (m; [s; t]) = max

0
BB@

maxi�s fW (m� 1; [i; t]) + gm;[s;t]

maxi�s fU (m� 1; [i; t]) + gm;[s;t]

fU (m; [s; t� 1]) + gm;t

(or gm;t when s = t)

1
CCA

Next, let fD(m; [s; t]) denote the gain of the rec-

tilinear region that maximizes the gain among all

D or WD rectilinear regions whose last column is

the m-th one and whose intersection with the m-

th column ranges from the s-th pixel to the t-th

pixel. For m = 1, fD(1; [s; t]) = g1;[s;t]. For

m > 1, we pre-compute maxt�i fW (m� 1; [s; i]) and

maxt�i fU (m� 1; [s; i]), and then obtain the recurrence:

fD(m; [s; t]) = max

0
BB@

maxt�i fW (m� 1; [s; i]) + gm;[s;t]

maxt�i fD(m� 1; [s; i]) + gm;[s;t]

fD(m; [s+ 1; t]) + gm;s

(or gm;s when s = t)

1
CCA

Finally, let fN (m; [s; t]) denote the gain of the

rectilinear region that maximizes the gain among all

rectilinear regions such that their types are N , UN ,

DN , WDN , WN , orWUN , and their last columns are

the m-th one and whose intersections range from the

s-th pixel and the t-th pixel. For m = 1, fN (1; [s; t]) =

g1;[s;t]. For m > 1, we have the following recurrence:

fN(m; [s; t]) = max

0
BBBBBB@

fW (m� 1; [s; t]) + gm;[s;t]

fU (m� 1; [s; t]) + gm;[s;t]

fD(m� 1; [s; t]) + gm;[s;t]

fN (m� 1; [s; t]) + gm;[s;t]

fN (m; [s� 1; t])� gm;s�1

fN (m; [s; t+ 1])� gm;t+1

1
CCCCCCA

In this case, we need to compute fN (m; [s; t]) by using

fN (m; [s � 1; t]) and fN (m; [s; t + 1]), which have been

computed for longer ranges [s�1; t] or [s; t+1]. Thus we

�rst compute fN (m; [1; N ]) = maxffN (m� 1; [1; N ]) +

gm;[1;N]; gm;[1;N ]g.
Consequently a simple dynamic programming gives

us an O(N3) time solution for computing fW (m; [s; t]),

fU (m; [s; t]), fD(m; [s; t]), and fN (m; [s; t]) for allm and

s � t.

4 Mathematical Analysis on a Model

In this section we present a model to explain the ad-

vantage of rectilinear regions over x-monotone regions.

Although the model may look very specialized and arti-

�cial, a similar situation was frequently observed when

the optimal x-monotone regions appeared to be weird.

Consider the sample grid G shown in Figure 5.

Suppose that the support of each pixel is 1, which means

the total number of tuples in the grid is N2, and the

con�dence of each pixel is 0 or 1. We denote a pixel

whose con�dence is 1 by a black box. We denote the

lower half part of the grid by R, which consists of the

rows below (or on) the N=2-th row in Figure 5. The

row index is counted from the bottom. We �x a constant

K(� N=2), denote the region below or on the (N=2�K)-

th row is denoted by R0, and let R00 = R�R0. The grid

in Figure 5 is created according to the following rules:

1. Each pixel in R0 has the con�dence 1.

2. Each pixel in the N=2� i-th row has the con�dence

1 with a probability of (i+ 1)=K, for i < K.

3. Each pixel in G � R has the con�dence 1 with a

probability of 1=N .

The intuition behind the above rules is that the

con�dence of each grid decreases gradually from lower

row to higher in the presence of small noise. Figure 5

shows an instance when N = 20 and K = 5.

1st row

(N/2)-th
row R"

R’

R

G-R

(N/2-K)
-th row

Figure 5: Sample Grid

Consider the set of all possible grids generated accord-

ing to the above rules, which we call the universe. The

universe contains the grid in Figure 5 as an instance. Let

us use 0:5N2 as the minimum support threshold. For

each grid in the universe, let us consider to generate the

optimized-con�dence x-monotone region Rmonotone and

the optimized-con�dence rectilinear region Rrecti. Con-

sidering the way of constructing grids in the universe, we

expect that the shape of the optimized-con�dence region

is fairly close to that of R, and hence we are interested

6



Figure 6: Optimized-con�dence X-monotone Region

Figure 7: Optimized-con�dence Rectilinear Region

in the support of the set di�erence Rmonotone � R and

Rrecti �R. We can prove the following result.

Theorem 4.1 The support of Rmonotone�R is approxi-

mately (
p
2K�

p
K)N , while the support of Rrecti�R is

bounded by 2K log2K+O(K logN), which is better than

the x-monotone case by a factor of N=(
p
2K log2K).

Proof: See Appendix B.

Note that the real factor might be much larger than

the above theoretical factor. For instance, Figures 6

and 7 respectively show the optimized-con�dence x-

monotone regionRmonotone and the optimized-con�dence

rectilinear region Rrecti for the grid in Figure 5. In this

particular case, where N = 20 and K = 5, the support

of Rmonotone �R is 24, and that of Rrecti � R is 2.

Reader might think that the above particular model

favors the family of rectilinear regions than that of x-

monotone regions. The advantage of rectilinear regions

can be also shown by other typical distributions. For

example, if the core R0 of the region is a axis parallel

rectangle whose horizontal width is 
(N) and the

vertical width is smaller than that, and the boundary

region R00 formsK layers whose distribution is the same

as the above example, the same asymptotic analysis can

be obtained.

However, it is di�cult to give mathematical analysis

without �xing the distribution and rule. We therefore

experimentally show the tolerance of rectilinear convex

regions in the next section.

5 Experimental Results

Over�tting

In this section, we experimentally show that an opti-

mized x-monotone region is likely to over�t the training

dataset seriously, and therefore it tends to fail to give a

good prediction on an unseen dataset, while we remark

that optimized rectilinear regions do not su�er from this

over�tting problem so much.

For this experiment we generate synthetic datasets

that represent typical cases in practice. Let A and B

be numeric attributes such that the domain of both A

and B is the interval ranging from -1 to 1, and let C be

an objective Boolean attribute. We generate a dataset

whose tuples are generated according to the following

procedure:

1. Generate random points that are uniformly dis-

tributed in [�1; 1]� [�1; 1].

2. For each point (t[A]; t[B]), we determine the value

of t[C] as follows, and add tuple t to the dataset.

Let p(x; y) be a function from [�1; 1] � [�1; 1]
to [0; 1]. Set 1 to t[C] with a probability of

p(t[A]; t[B]), and set 0 to t[C] otherwise.

We use the following two functions for p(x; y):

� plinear(x; y) =
1p
2�

exp(
�(x�y)2

4
), which means the

normal distribution with respect to the distance

between (x; y) and the diagonal y = x.

� pcircular(x; y) =
1

2�
exp(x

2
+y

2

2
), which is the normal

distribution in two dimensional plane.

We generate two datasets both of which consist of 10,000

records. We create one dataset, named Dlinear, by

using plinear(x; y), and the other, named Dcircular, by

pcircular(x; y).

To compare x-monotone regions and rectilinear re-

gions with respect to over�tting, we perform the follow-

ing N-fold cross validation;

1. We randomly divide a given dataset, Dlinear or

Dcircular, into N equal-sized subsets.

2. We take the union of N�1 subset and use the union

as the training dataset for generating optimized

regions; that is, we create the optimized-con�dence

x-monotone region and rectilinear region for the

minimum support threshold, say 50%, from the

training data.
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No. of Pixels Training Test Test � Training

8� 8 36.56% 35.22% -1.34%

16� 16 37.57% 34.91% -2.66%

32� 32 38.97% 34.67% -4.30%

64� 64 41.20% 34.31% -6.89%

(a) Con�dence of Optimized X-monotone Regions

No. of Pixels Training Test Test � Training

8� 8 36.44% 35.24% -1.20%

16� 16 37.04% 35.33% -1.71%

32� 32 37.49% 35.51% -1.98%

64� 64 37.92% 35.30% -2.62%

(b) Con�dence of Optimized Rectilinear Regions

Table 1: Results for Dlinear

No. of Pixels Training Test Test � Training

8� 8 14.37% 12.88% -1.49%

16� 16 15.54% 13.22% -2.32%

32� 32 16.71% 12.95% -3.76%

64� 64 18.41% 12.78% -5.63%

(a) Con�dence of Optimized X-monotone Regions

No. of Pixels Training Test Test � Training

8� 8 14.35% 13.34% -1.01%

16� 16 14.90% 13.60% -1.30%

32� 32 15.33% 13.65% -1.68%

64� 64 15.71% 13.89% -1.82%

(b) Con�dence of Optimized Rectilinear Regions

Table 2: Results for Dcircular

3. We then use the remaining one subset as the test

dataset. We computes the ratio of the number of

test success tuples in each optimized region to the

number of test tuples in the region, which we also

call the con�dence of region against the test data.

4. We repeat the above three steps N times, and then

we compute the average of all the con�dences.

We performed 10-fold cross validation for Dlinear

and Dcircular. Table 1 shows the results for Dlinear.

Table 1(a) shows the con�dence of the optimized-

con�dence x-monotone region for various numbers of

pixels ranging from 8�8 to 64�64. The second column

shows the con�dence of each optimized x-monotone

region created from the training dataset, the third

column presents the con�dence of each optimized region

against the test dataset, and the fourth column gives the

subtractions of the values in the third column from those

in the second. The fourth column therefore tells us how

much the optimized x-monotone over�ts the training

data but fails to predict for the test data. Observe

that for the larger number of pixels, the di�erences

in the fourth column increases. Table 1(b) illustrates

the con�dence of the optimized-con�dence rectilinear

region, but in this case the subtraction in the fourth

column increases with a smaller amount for larger

number of pixels. We also observe that the con�dence of

the optimized rectilinear region against the test dataset

(in the second column of Table 1(b)) is always higher

than that of the optimized x-monotone region (in the

second column of Table 1(a)) for any number of pixels.

Thus we conclude that the optimized rectilinear region

is less over�t the training data than the optimized x-

monotone region does.

Incidentally, the second column of Table 1(a) implies

that the con�dence of the optimized x-monotone region

is rather dependent of the resolution of the grid,

while the second column of Table 1(b) means that the

con�dence of the optimized rectilinear region is almost

stable even if the number of pixels increases. We

therefore conclude that the con�dence of the optimized

rectilinear region is less dependent of the choice of the

number of pixels.

Table 2 illustrates the results for Dcircular, from

which we can also draw conclusions similar to what

we have observed for Dlinear. In general, in real

applications, we have also observed the advantage of

rectilinear regions over x-monotone regions.

Performance of Computing Rectilinear Regions

To measure the worst-case performance, we need to

produce a synthetic dataset so that we have a large

number of stamp points that are densely scattered

on the upper convex of all the stamp points (recall

Figure 2). To this end, we generate the dataset as

follows: we �rst generated random numbers uniformly

distributed in [N2; 2N2] and assigned them to ui;j , and

then we assigned 1; 2; : : : ; N2 to vi;j from a cell in

the lower-right corner to the central cell in clockwise

rotation, like spiral stairs.

The experiments were carried out by using our

prototype system called Database SONAR (System for

Optimized Numeric Association Rules). The programs

were written in C++ and run on one node of an IBM

SP2 workstation, each node of which has a 66-MHz

Power2 chip, 2 MB of L2 cache, and 256 MB of main

memory, running under AIX operating system, version

4.1.

Tables 3 (a), (b), and (c) show the execution times

required to �nd the optimized con�dence regions for

the rectangular, rectilinear, and x-monotone types,

respectively, with minimum supports of 30%, 50% and

70% and for numbers of pixels ranging from 8 � 8 to

256 � 256. These experimental tests con�rmed that

the computation time for each of optimized rectangular

regions, x-monotone regions, and rectilinear regions

is respectively O(n1:5), O(n lnM), and O(n1:5 lnM),
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Minisup

No. of pixels 30% 50% 70%

8� 8 0.004 0.001 0.001

16� 16 0.010 0.008 0.007

32� 32 0.067 0.051 0.045

64� 64 0.479 0.364 0.321

128� 128 3.638 2.747 2.413

(a) Optimized rectangular regions

Minisup

No. of pixels 30% 50% 70%

8� 8 0.016 0.014 0.013

16� 16 0.080 0.089 0.086

32� 32 0.417 0.378 0.363

64� 64 2.029 1.830 1.748

128� 128 7.653 7.983 7.181

(b) Optimized x-monotone regions

Minisup

No. of pixels 30% 50% 70%

8� 8 0.017 0.012 0.010

16� 16 0.087 0.087 0.088

32� 32 0.735 0.746 0.834

64� 64 6.413 6.502 7.170

128� 128 57.001 63.018 63.223

(c) Optimized rectilinear regions

Table 3: Execution time of computing optimized

rectilinear regions

where n is the number of pixels and M is the number

of tuples.
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Appendix

A Computing optimized rectilinear

regions exactly

Theorem 2.1 Let M denote the total number of tuples

in the given database. Suppose that we have n (= N�N )

pixels. For each pixel G(i; j), let ui;j denote the number

of tuples mapped to G(i; j), and let vi;j denote the

number of success tuples mapped to G(i; j). We have

the following properties:

1. The optimized-con�dence rectilinear region or the

optimized-support rectilinear region can be computed

in O(n1:5M) time.

2. No algorithm can compute the optimized-con�dence

(or -support) rectilinear region in polynomial time

with respect to n and logM unless P = NP .

Proof: We begin by proving the �rst property. Recall

the four types of rectilinear region, which are named

W , U , D, and N in Section 3. Let us concentrate on

W -type rectilinear regions. Consider the set of W -type

rectilinear regions each of which satis�es the conditions

that its support is k, all of its pixels are to the left

of the m-th column, and its intersection with the m-

th column consists of pixels ranging from G(s;m) to

G(t;m). If the set is non-empty, let fW (k;m; [s; t])

denote the maximum hit of all regions in the set.

Otherwise, de�ne fW (k;m; [s; t]) = �1. In a similar

way, we de�ne fU (k;m; [s; t]) for U or WU regions,

fD(k;m; [s; t]) for D orWD regions, and fN (k;m; [s; t])

for N , UN , DN , WDN , WN , or WUN regions.

Once we have computed the table of fW (k;m; [s; t]),

fU (k;m; [s; t]), fD(k;m; [s; t]), and fN (k;m; [s; t]) for

all k = 1; : : : ;M and m; s; t = 1; : : : ; N , by scanning

the table we can obtain the optimized-con�dence (or

-support) rectilinear region in O(n1:5M) time.

We will consider the case of computing fW (k;m; [s; t]).

The other cases can be solved in a similar way. First

we consider the basic step when m = 1. For all pairs

(s; t) of 1 � s < t � N and for each k = 1; : : : ;M ,

fW (k; 1; [s; t]) can be obtained as follows:

fW (k; 1; [s; t]) :=
Pt

i=s
v1;i if k =

Pt

i=s
u1;i

:= �1 otherwise

Next, we show the inductive step when m > 1. Suppose

that s = t.

fW (k;m; [s; s]) =

8>><
>>:

�1 if k < um;s.

vm;s if k = um;s.

fW (k � um;s;m� 1; [s; s]) + vm;s

if k > um;s.

Next, suppose that s < t. If k <
P

t

i=s
um;i, de�ne

fW (k;m; [s; t]) = �1:

If k =
P

t

i=s
um;i, set

P
t

i=s
vm;i to fW (k;m; [s; t]).

Otherwise, compute the following and set the maximum

to fW (k;m; [s; t]).

max

8<
:

fW (k �Pt

i=s
um;i;m� 1; [s; t]) +

P
t

i=s
vm;i;

fW (k � um;s;m; [s+ 1; t]) + vm;s;

fW (k � um;t;m; [s; t� 1]) + vm;t

9=
;

Thus, a simple dynamic programming gives an O(N3M)

solution for computing fW (k;m; [s; t]).

Next, we will prove the second property. Consider

the pixels G(i; j) that meet the following properties:

� If i � j, ui;j = vi;j > 0.

� If i = j + 1, ui;j > 0 and vi;j = 0.

� Otherwise, ui;j = vi;j = 0.

Suppose that K is the minimum support threshold such

that
P

i�j ui;j < K � M . Observe that the optimized-

con�dence rectilinear region for the minimum support

K must contain all of G(i; j) such that i � j and some

of G(j + 1; j). To compute the optimized region, we

need to �nd a subset S of f1; : : : ; N�1g that minimizesP
j2S uj+1;j under the condition that

P
j2S uj+1;j �

K �P
i�j ui;j . If the optimized-con�dence rectilinear

region can be computed in a time polynomial to n

and logM , in the same time complexity we can also

determine whether or not there exists S such thatP
j2S uj+1;j = K �P

i�j ui;j , which is equivalent to

the NP-complete subset sum problem [9]. Consequently,

unless P = NP , no algorithm exists for computing the

optimized-con�dence rectilinear region in polynomial

time with respect to n and logM .

The same argument can be carried over to the case of

the optimized-support rectilinear region. Suppose that

� is the minimum con�dence threshold such that
P

i�j ui;jP
i�j ui;j +

P
N�1

j
uj+1;j

< � � 1:

Then the optimized-support rectilinear region for �

must be the set of all of G(i; j) such that i � j and

G(j + 1; j) for j 2 S such that S(� f1; : : : ; N � 1g)
maximizes

P
j2S uj+1;j under the condition that the

con�dence of the optimized region is at least �; that

is, P
i�j ui;jP

i�j ui;j +
P

j2S uj+1;j

� �;

which is equivalent to

(
1

�
� 1)

X
i�j

ui;j �
X
j2S

uj+1;j :

If the optimized-support rectilinear region can be

computed in a time polynomial to n and logM , in the
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same time complexity we can determine whether or not

there exists S such that

(
1

�
� 1)

X
i�j

ui;j =
X
j2S

uj+1;j ;

which is equivalent to the NP-complete subset sum

problem.

B Mathematical Analysis on a Model

Theorem 4.1 The support of Rmonotone�R is approxi-

mately (
p
2K�

p
K)N , while the support of Rrecti�R is

bounded by 2K log2K+O(K logN), which is better than

the x-monotone case by a factor of N=(
p
2K log2K).

Proof: We �rst show that the support of the set

di�erence Rmonotone � R is approximately (
p
2K �p

K)N .

For the i-th column, let d(i) be the maximum of

the index such that its subinterval [(N=2; i); :::(N=2 �
d(i); i)] has con�dence 0. Then, the expected size of

d(i) is
p
2K + o(

p
K). Removing the above subinterval

from each row, from R, we have an x-monotone region

Q. Support of R�Q is expectedly N
p
2K.

Thus, Rmonotone is the union of Q and some noise

(positive data) of G � R, together with the bridging

column interval between the noise and Q.

Since the height of the noise data in G � R in the

upper half grid is randomly distributed, approximately

L =
p
2N

p
2K noise data are included in Rmonotone. If

K is large, this region looks much di�erent from R, and

gives poor intuition on the rule R which we would like

to extract.

In this model, we can also see that using a dense

grid is often unsuitable to extract an x-monotone region

rule. Suppose that we unite 2i� 1-th column and 2i-th

column into one (and analogously, unite two rows into

one), to make an coarser N=2�N=2 grid, and that the

same sample data output the rule region Rdouble. Then,

support of the set di�erence Rdouble�R is decreased top
KN which is approximately 1=

p
2 of Rmonotone � R,

and the support of the set di�erence Rdouble�Rmonotone

is approximately (
p
2K�

p
K)N , which we consider too

large.

In order to eliminate the ugly side-e�ect of the noise,

we should use a grid as coarse as M1=3 � M1=3 grid

for a sample data of size M if K is large (say, 
(N)).

Moreover, if the data distribution is skew, it may be

necessary to use a coarser grid.

Next we show that the support of Rrecti � R is

bounded by 2K log2K + O(K logN).

Qrecti = Rrecti [ R must be rectilinear convex, and

Rrecti must be the union of Qrecti and a rectangle

consisting of some full-columns.

The intersection of the Qrecti and the i-th row of R

(i.e., (N=2�i+1)-th row of the grid) is an interval, which

we denote I(i). The complement of I(i) in the row

consists of two intervals, each of which has a terminal

pixel of the row.

Since the con�dence of the i-th row of R is i=K for

i � K, the expected number of the positive data in the

leftmost t pixels in the row is it=K. Also, the expected

number of the largest t0 such that the leftmost t0 pixels

contains at most h positive data is (h+ 1)K=i.

Hence, if R � Qrecti contains no positive data, the

expected number of pixels in R�Qrecti is 2
PK

i=1
K=i �

2K logK + 2K. Also, if R � Qrecti contains s � 1

positive data, the expected number of pixels in R �
Qrecti is less than 2K logK + (s + 2)K for s � N=K.

If s > i(i + 1)N=2K = N=K + 2N=K + :: + iN=K

for an i, the expected number is less than EQ(s) =

2K logK + 2K + iN + (s � i(i + 1)N=2K)(i + 1)=K.

The probability that the number of pixels becomes

(1+ c)EQ(s) is at most e
�(c log n)

2
=2 (this can be proved

by using Azuma's inequality [12]).

Rrecti\G�R must also be a rectilinear convex region,

indeed, a region below a rectilinear convex chain. Let us

consider rectilinear convex chains whose peak is located

on a �xed (say, the j-th) column. Let us consider the

subregion P (A) of G�R consisting the pixels below the

curve (y�N=2) � A=jx�jj, embedding G into the x�y
region.

Then, every rectilinear convex region whose peak is

at the j-th column is either a subregion of P (A), or

contains more than A pixels. The number of pixels

in P (A) is at most 2A logA. Since the con�dence of

G�R is 1=N , the expected number of positive data in

P (A) is at most �(A) = 2AN�1 lnA (ln is the natural

logarithm) .

Moreover, from the Cherno�'s bound, the probability

that the number of positive data in P (A) exceeds

(1 + 
)�(A) for 
 > 2e � 1 (e = 2:71::) is at most

2�(1+
)�(A)=2. Since the number of choice of j and A

are at most N and N2, respectively, it happens with

very low probability (at most N�1) that a rectilinear

convex region with any area A contains more than 4�(A)

positive data if �(A) � 2 logN .

If �(A) < 2 logN , EQ(8 logN) < 2K logK +

8K logN . Hence, the area R � Qrecti is O(K logN)

with high probability. We now consider the case �(A) �
2 logN .

Since �(A) = 2AN�1 logA, A = �(A)N=2 logA.

A = support(Rrecti � R) � support(R � Qrecti) must

hold if Rrecti is the maximum con�dence region with

support threshold 0:5. However, it is not di�cult to

show that EQ(4�(A)) � A holds with high probability

if A � 2K log2A.

Thus, the support of Rrecti � R is bounded by

2K log2K + O(K logN). This is better than the x-

monotone case by a factor of N=(
p
2K log2K).
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