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SUMMARY We address the problem of computing various
types of expressive tests for decision trees and regression trees.
Using expressive tests is promising, because it may improve the
prediction accuracy of trees, and it may also provide us some
hints on scientific discovery. The drawback is that computing
an optimal test could be costly. We present a unified framework
to approach this problem, and we revisit the design of efficient
algorithms for computing important special cases. We also prove
that it is intractable to compute an optimal conjunction or dis-
junction.
key words: classification, regression, decision trees

1. Introduction

A decision (resp. regression) tree is a rooted binary tree
structure for predicting the categorical (numeric) val-
ues of the objective attribute. Each internal node has a
test on conditional attributes that splits data into two
classes. A record is recursively tested at internal nodes
and eventually reaches a leaf node. A good decision
(resp. regression) tree has the property that almost all
the records arriving at every node take a single categor-
ical value (a numeric value close to the average) of the
objective attribute with a high probability, and hence
the single value (the average) could be a good predictor
of the objective attribute.

Making decision trees [9]–[11] and regression trees
[2] has been a traditional research topic in the field of
machine learning and artificial intelligence. Recently
the efficient construction of decision trees and regres-
sion trees from large databases has been addressed and
well studied among the database community and the
KDD community. For details, see the proceedings of re-
cent ACM SIGMOD or SIGKDD conferences. Comput-
ing tests at internal nodes is the most time-consuming
step of constructing decision trees and regression trees.
In the literature, there have been used simple tests that
check if the value of an attribute is equal to (or less
than) a specific value.

Using more expressive tests is promising in the
sense that it may reduce the size of decision or regres-
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sion trees while it can retain higher prediction accu-
racy [3], [8]. The drawback however is that the use of
expressive tests could be costly. We consider the fol-
lowing three types of expressive tests for partitioning
data into two classes; 1) subsets of categorical values
for categorical attributes, 2) ranges and regions for nu-
meric attributes, and 3) conjunctions and disjunctions
of tests. We present a unified framework for handling
those problems. We then reconstruct efficient algo-
rithms for the former two problems, and we prove the
intractability of the third problem.

2. Preliminaries

2.1 Relation Scheme, Attribute and Relation

Let R denote a relation scheme, which is a set of cat-
egorical or numeric attributes. The domain of a cate-
gorical attribute is a set of unordered distinct values,
while the domain of a numeric attribute is real numbers
or integers. We select a Boolean or numeric attribute
A as special and call it the objective attribute. We call
the other attributes in R conditional attributes.

Let B be an attribute in relation scheme R. Let
t denote a record (tuple) over R, and let t[B] be the
value for attribute B. A set of records over R is called
a relation over R.

2.2 Tests on Conditional Attributes

We will consider several types of tests for records in a
database. Let B denote an attribute, and let v and vi

be values in the domain of B. B = v is a simple test,
and t meets B = v if t[B] = v.

When B is a categorical attribute, let {v1, . . . , vk}
be a subset of values in the domain of B. Then,
B ∈ {v1, . . . , vk} is a test, and t satisfies this test if
t[B] is equal to one value in {v1, . . . , vk}. We will call
a test of the form B ∈ {v1, . . . , vk} a test with a subset
of categorical values.

When B is a numeric attribute, B = v, B <= v,
B >= v, and v1 <= B <= v2(B ∈ [v1, v2]) are tests, and a
record t meets them respectively if t[B] = v, t[B] <= v,
t[B] >= v, and v1 <= t[B] <= v2. We will call a test of the
form B ∈ [v1, v2] a test with a range.

The negation of a test T is denoted by ¬T . A
record t meets ¬T if t does not satisfy T . The negation
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of ¬T is T .
A conjunction (a disjunction, respectively) of tests

T1, T2, . . . , Tk is of the form T1 ∧T2 ∧ . . .∧Tk (T1 ∨T2 ∨
. . .∨ Tk). A record t meets a conjunction (respectively,
a disjunction) of tests, if t satisfies all the tests (some
of the tests).

2.3 Splitting Criteria for Boolean Objective Attribute

Splitting Relation in Two

Let R be a set of records over R, and let |R| denote
the number of records in R. Let Test be a test on con-
ditional attributes. Let R1 be the set of records that
meet Test, while let R2 denote R−R1. In this way, we
can use Test to divide R into R1 and R2. Suppose that
the objective attribute A is Boolean. We call a record
whose A’s value is true a positive record with respect to
the objective attribute A. Let Rt denote the set of pos-
itive records in R. On the other hand, we call a record
whose A’s value is false a negative record, and let Rf

denote the set of negative records in R. The following
diagram illustrates how R is partitioned.

R = Rt ∪ Rf

↙ ↘
R1 = Rt

1 ∪ Rf
1 R2 = Rt

2 ∪ Rf
2

The splitting by Test is effective for characterizing
the objective Boolean attribute A if the probability of
positive records changes dramatically after the division
of R into R1 and R2; for instance, |Rt|/|R| � |Rt

1|/|R1|,
and |Rt|/|R| 	 |Rt

2|/|R2|. On the other hand, the
splitting by Test is most ineffective if the probabil-
ity of positive records does not change at all; that is,
|Rt|/|R| = |Rt

1|/|R1| = |Rt
2|/|R2|.

Measuring the Effectiveness of Splitting

It is helpful to have a way of measuring the effectiveness
of the splitting by a condition. To define the measure,
we need to consider |R|, |Rt|, |Rf |, |R1|, |Rt

1|, |Rf
1 |,

|R2|, |Rt
2| and |Rf

2 | as parameters, which satisfy the
following equations:

|R| = |Rt| + |Rf | |R| = |R1| + |R2|
|R1| = |Rt

1| + |Rf
1 | |R2| = |Rt

2| + |Rf
2 |

|Rt| = |Rt
1| + |Rt

2| |Rf | = |Rf
1 | + |Rf

2 |
Since R is given and fixed, we can assume that |R|, |Rt|,
and |Rf | are constants. Let n and m denote |R| and
|Rt| respectively, then |Rf | = n−m. Furthermore, if we
give the values of |R1| and |Rt

1|, for instance, the values
of all the other variables are determined. Let x and y
denote |R1| and |Rt

1| respectively. Let φ(x, y) denote
the measurement of the effectiveness of the splitting
by condition Test. We now discuss some requirements
that φ(x, y) is expected to have.

Fig. 1 (x, y), (x, y +∆), (x−∆, y), (x, y −∆), and (x +∆, y)

We first assume that lower value of φ(x, y) indi-
cates higher effectiveness of the splitting. It does not
matter if we select the reverse order. The splitting
by Test is most ineffective when |Rt|/|R| = m/n =
|Rt

1|/|R1| = y/x = |Rt
2|/|R2|, and hence φ(x, y) should

be maximum when y/x = m/n.
Suppose that the probability of positive records in

R1, y/x, is greater than that of positive records in R,
m/n. Also suppose that if we divide R by another new
test, the number of positive records in R1 increases by
∆ (0 < ∆ <= x − y), while |R1| is the same. Then,
the probability of positive records in R1, (y + ∆)/x,
becomes to be greater than y/x, and hence we want to
claim that the splitting by the new test is more effec-
tive. Thus we expect φ(x, y + ∆) <= φ(x, y). Similarly,
since y/x <= y/(x−∆) for 0 <= ∆ < x−y we also expect
φ(x−∆, y) <= φ(x, y). Figure 1 illustrates points (x, y),
(x, y + ∆), and (x − ∆, y).

If the probability of positive records in R1, y/x, is
less than the average m/n, then (x, y) is in the lower
side of the line connecting the origin and (m, n). See
Figure 1. In this case observe that the probability of
positive records in R2, which is (m − y)/(n − x), is
greater than m/n. Suppose that the number of positive
records in R1 according to the new test decreases by ∆
(0 < ∆ <= x − y), while |R1| is unchanged. Then, the
number of positive records in R2 increases by ∆ while
|R2| is the same. Thus the splitting by the new test
is more effective, and we expect φ(x, y − ∆) <= φ(x, y).
Similarly we also want to require φ(x+∆, y) <= φ(x, y).

In summary φ is expected to satisfy that if y/x >
m/n, then φ(x, y+δ) <= φ(x, y) and φ(x−δ, y) <= φ(x, y),
oherwise, φ(x, y−δ) <= φ(x, y) and φ(x+δ, y) <= φ(x, y).

Entropy of Splitting

We present an instance of φ(x, y) that meets all the
requirements discussed so far. Let ent(p) = −p ln p −
(1− p) ln(1− p), where p means the probability of pos-
itive records in a set of records, while (1 − p) implies
the probability of negative records. Define the entropy
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Ent(x, y) of the splitting by Test as follows:

x

n
ent(

y

x
) +

n − x

n
ent(

m − y

n − x
),

where y
x (m−y

n−x , respectively) is the probability of pos-
itive records in R1 (R2). This function is known as
Quinlan’s entropy heuristic [9], and it has been tradi-
tionally used as a criteria for evaluating the effective-
ness of the division of a set of records. Ent(x, y) is
an instance of φ(x, y). We use the following theorem
to show that Ent(x, y) satisfies all the requirements on
φ(x, y).
Theorem 2.1: Ent(x, y) is a concave function for
x >= y >= 0; that is, for any (x1, y1) and (x2, y2) in
{(x, y) | x >= y >= 0} and any 0 <= λ <= 1,

λEnt(x1, y1) + (1 − λ)Ent(x2, y2)
<= Ent(λ(x1, y1) + (1 − λ)(x2, y2)).

Ent(x, y) is maximum when y/x = m/n.
Proof: See Appendix.

We immediately obtain the following corollary.
Corollary 2.1: Let (x3, y3) be an arbitrary dividing
point of (x1, y1) and (x2, y2) in {(x, y) | x >= y >= 0};
namely, (x, y) is a point on the line segment connecting
the two points. Then, min(Ent(x1, y1), Ent(x2, y2)) <=
Ent(x3, y3).

For any (x, y) such that y/x > m/n and any
0 < ∆ <= x − y, from the above corollary we have

min(Ent(x, y + ∆), Ent(x, (m/n)x)) <= Ent(x, y),

because (x, y) is a dividing point of (x, y + ∆) and
(x, (m/n)x). Since Ent(x, (m/n)x) is maximum,

Ent(x, y + ∆) <= Ent(x, y),

and hence Ent(x, y) satisfies the requirement φ(x, y +
∆) <= φ(x, y). In the same way we can show that
Ent(x, y) meets all the requirements on φ(x, y).

2.4 Splitting Criteria for Numeric Objective Attribute

Consider the case when the objective attribute A is nu-
meric. Let µ(R) denote the average of A’s values in re-
lation R; that is, µ(R) =

∑
t∈R t[A]/|R|. Let R1 denote

again the set of records that meet a test on conditional
attributes, while let R2 denote R − R1.

In order to characterize A, it is useful to find a test
such that µ(R1) is considerably higher than µ(R) while
µ(R2) is substantially lower than µ(R) simultaneously.
To realize this criteria, we use the interclass variance
of the splitting by the test:

|R1|(µ(R1) − µ(R))2 + |R2|(µ(R2) − µ(R))2.

A test is more interesting if the interclass variance of
the splitting by the test is larger. We also expect that
the variance of A’s values in R1 (resp., R2) should be

small, which lets us approximate A’s values in R1 (R2)
at µ(R1) (µ(R2)). To measure this property, we employ
the intraclass variance of the splitting by the test:

∑
t∈R1

(t[A] − µ(R1))2 +
∑

t∈R2
(t[A] − µ(R2))2

|R| .

We are interested in a test that maximizes the interclass
variance and also minimizes the intraclass variance at
the same time. Actually the maximization of the inter-
class variance coincides with the minimization of the
intraclass variance.
Theorem 2.2: Given a set of tests on conditional at-
tributes, the test that maximizes the interclass variance
also minimizes the intraclass variance.
Proof: See Appendix.

In what follows, we will focus on the maximization
of the interclass variance. When R is given and fixed,
|R|(= |R1| + |R2|) and

∑
t∈R t[A] can be regarded as

constants, and let n and m denote |R| and
∑

t∈R t[A]
respectively. If we denote |R1| and

∑
t∈R1

t[A] by x and
y, the interclass variance is determined by x and y as
follows:

x(
y

x
− m

n
)2 + (n − x)(

m − y

n − x
− m

n
)2,

which will be denoted by V ar(x, y). We then have the
following property of V ar(x, y), which is similar to The-
orem 2.1 for the entropy function.
Theorem 2.3: V ar(x, y) is a convex function for 0 <
x < n; that is, for any (x1, y1) and (x2, y2) such that
n > x1, x2 > 0 and any 0 <= λ <= 1,

λV ar(x1, y1) + (1 − λ)V ar(x2, y2)
>= V ar(λ(x1, y1) + (1 − λ)(x2, y2)).

V ar(x, y) is minimum when y/x = m/n.
Proof: See Appendix.

Corollary 2.2: If (x3, y3) be an arbitrary dividing
point of (x1, y1) and (x2, y2) such that n > x1, x2 > 0,
then max(V ar(x1, y1), V ar(x2, y2)) >= V ar(x3, y3).
Since the interclass variance has the property similar
to the entropy function, in the following sections, we
will present how to compute the optimal test that min-
imizes the entropy, but all arguments directly carry over
to the case of finding the test maximizing the interclass
variance.

2.5 Positive Tests and Negative Tests

Let R be a given relation, and let R1 be the set of
records in R that meet a given test. If the objective
attribute A is Boolean, we treat “true” and “false” as
numbers “1” and “0” respectively. We call the test
positive if the average of A’s values in R1 is greater
than or equal to the average of A’s values in R; that is,
(
∑

t∈R1
t[A])/|R1| >= (

∑
t∈R t[A])/|R|. Otherwise the
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test is called negative. Thus, when A is Boolean, the
probability of positive records in R1 is greater than or
equal to the probability of positive records in R.

The test that minimizes the entropy could be either
positive or negative. In what follows, we will focus on
computing the positive test that minimizes the entropy
of the splitting by the positive test among all the posi-
tive tests. This is because the algorithm for computing
the optimal positive test can be used to calculate the
optimal negative test by exchanging “true” and “false”
of the objective Boolean attribute value (or reversing
the order of the objective numeric attribute value) in
each record.

3. Computing Optimal Tests with Subsets of
Categorical Values

Let C be a conditional categorical attribute, and let
{c1, c2, . . . , ck} be the domain of C. Among all the
positive tests of the form C ∈ S where S is a sub-
set of {c1, c2, . . . , ck}, we want to compute the posi-
tive test that minimizes the entropy of the splitting. A
naive solution would consider all the possible subsets
of {c1, c2, . . . , ck} and select the one that minimizes the
entropy. Instead of investigating all 2k subsets, there is
an efficient way of checking only k subsets.

We first treat “true” and “false” as real numbers
“1” and “0” respectively. Assume that {t | t[C] = ci}
is non-empty for simplicity. Otherwise, remove ci from
the domain of C. For each ci, let µi denote the average
of A’s values of all the records whose C’s values are ci;
that is,

µi =

∑
t[C]=ci

t[A]

|{t | t[C] = ci}| .
Without loss of generality we can assume that µ1 >=
µ2 >= . . . >= µk, otherwise we rename the categorical
values appropriately to meet the above property. We
then have the following theorem.
Theorem 3.1: Among all the positive tests with sub-
sets of categorical values, there exists a positive test of
the form C ∈ {ci | 1 <= i <= j} that minimizes the
entropy of the splitting.

This theorem is due to Breiman et al.[2]. Thanks
to this theorem, we only need to consider k tests of the
form C ∈ {ci | 1 <= i <= j} to find the optimal test. We
now prove the theorem by using techniques introduced
in the previous section.

Proof of Theorem 3.1

We will prove the case of the minimization of the en-
tropy. The case of maximization of the interclass vari-
ance can be shown similarly. With each subset W of
{c1, c2, . . . , ck}, we associate

p(W ) = ( |{t | t[C] ∈ W}|,
∑

t[C]∈W

t[A] )

in the Euclidean plane. Ent(p(W )) is the entropy of
the splitting by the test C ∈ W . Consider the set of
all points associated with all subsets of {c1, c2, . . . , ck}.
It is well known that a concave function is minimized
at the boundary of the convex hull of all those points.
Since we focus on positive tests with subsets of categori-
cal values, the subset W ∗ minimizing Ent(p(W ) can be
found by computing the point p(W ) that maximizes

∑

t[C]∈W

t[A] − λ|{t | t[C] ∈ W}|,

where λ is a positive parameter. Consider the equality:
∑

t[C]∈W

t[A] − λ|{t | t[C] ∈ W}|

=
∑

ci∈W

(
∑

t[C]=ci

t[A] − λ|{t | t[C] = ci}|)

=
∑

ci∈W

|{t | t[C] = ci}|(µi − λ).

For the purpose of maximization, we need to exclude
from W such ci that µi−λ < 0. Thus, W ∗ = {ci | µi >=
λ}. Since µ1 >= µ2 >= . . . >= µk, W ∗ = {ci | 1 <= i <= j}
for some j.

4. Computing Optimal Tests with Ranges or
Regions

Let B be a conditional attribute that is numeric, and
let I be a range of the domain of B. We are interested
in finding a test of the form B ∈ I that minimizes the
entropy (or maximizes the interclass variance) of the
splitting by the test. When the domain of B is real
numbers, the number of candidates could be infinite.
One way to cope with this problem is that we discretize
this problem by dividing the domain of B into disjoint
sub-ranges, say I1, . . . , IN , so that the union I1∪. . .∪IN

is the domain of B. The division of the domain, for
instance, can be done by distributing the values of B
in the given set of records into equal-sized sub-ranges.
We then concatenate some successive sub-ranges, say
Ii, Ii+1, . . . , Ij , to create a range Ii ∪ Ii+1 ∪ . . .∪ Ij that
optimizes the criteria of interest.

It is natural to consider the two-dimensional ver-
sion. Let B and C be numeric conditional attributes.
We also simplify this problem by dividing the domain
of B (resp. C) into NB (NC) equal-sized sub-ranges.
We assume that NB = NC = N without loss of gen-
erality as regards our algorithms. We then divide the
Euclidean plane associated with B and C into N × N
pixels. A grid region is a set of pixels, and let R be
an instance. A record t satisfies test (B, C) ∈ R if
(t[B], t[C]) belongs to R. We can consider various types
of grid regions for the purpose of splitting a relation in
two. In the literature two classes of regions have been
well studied [3], [4], [8], [12]. An x-monotone region is
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Fig. 2 An x-monotone region (left) and a rectilinear convex
region (right)

a connected grid region whose intersection with any
vertical line is undivided. A rectilinear convex region
is an x-monotone region whose intersection with any
horizontal line is also undivided. Figure 2 shows an
x-monotone region in the left and a rectilinear convex
region in the right.

In the case of computing the optimal range by
concatenating some consecutive sub-ranges of N sub-
ranges, we may consider O(N2) sequences of succes-
sive sub-ranges, but to this end, Katoh [6] presents an
O(N log N)-time algorithm.

On the other hand, the number of x-monotone
regions and the number of rectilinear convex regions
is more than 2N . It is non-trivial to efficiently find
such a region R that minimizes the entropy (maxi-
mizes the interclass variance) of the splitting by the
test (B, C) ∈ R. Here we review some techniques for
this purpose.

Convex Hull of Stamp Points

Let R denote the family of x-monotone regions or
the family of rectilinear convex regions. Let A be
the objective attribute. When A is Boolean, we
treat “true” and “false” as real numbers “1” and “0”.
With each region R in R, we associate a stamp point
(x, y) where x = |{t | t meets (B, C) ∈ R}| and y =∑

{t|t meets (B,C)∈R} t[A]. Since the number of regions
in R is more than 2N , we cannot afford to calculate all
the point associated, and hence we simply assume their
existence.

Let S denote the set of stamp points for a family
of regions R. A convex polygon of S has the property
that any line connecting arbitrary two points of S must
itself lies entirely inside the polygon. The convex hull
of S is the smallest convex polygon of S. The left in
Figure 3 illustrates the convex hull. The upper (lower)
half of a convex hull is called the upper (lower) hull, in
short.
Proposition 4.1: Let R ∈ R be the region such that
test (B, C) ∈ R minimizes the entropy (or maximizes
the interclass variance). The stamp point associated

Fig. 3 The left figure presents the convex hull of stamp points.
The middle illustrates P , Q1, Q2 and Q3 in Proposition 4.1. The
right shows the hand probing technique.

with R must be on the convex hull of S.
Proof: Otherwise there exists such a point P inside
the convex hull of S that minimizes the entropy. Se-
lect any point Q1 on the convex hull, draw the line
connecting P and Q1, and let Q2 be another point
where the line between P and Q1 crosses the con-
vex hull. From the concavity of the entropy function,
min(Ent(Q1), Ent(Q2)) <= Ent(P ), and there exists
a point Q3 on the convex hull such that Ent(Q3) <=
Ent(Q2) (see Figure 3). Thus, Ent(Q3) <= Ent(P ),
which is a contradiction.

If T is the positive (negative, resp.) test that min-
imizes the entropy among all the positive tests of the
form (B, C) ∈ R, from Proposition 4.1 the stamp point
associated with T must be on the upper (lower) hull.
We then present how to scan the upper hull to search
the stamp point that minimizes the entropy.

Hand-Probing

To this end it is useful to use the “hand-probing”
technique that was invented by Asano, Chen, Katoh
and Tokuyama [1] for image segmentation and was
later modified by Fukuda, Morimoto, Morishita and
Tokuyama [4] for extraction of the optimal x-monotone
region.

For each stamp point on the upper hull, there ex-
ists a tangent line to the upper hull at the point. Let θ
denote the slope of the tangent line. The right picture
in Figure 3 shows the tangent line. Note that the stamp
point maximizes y−θx among all the stamp points, and
let R denote the region that corresponds to the stamp
point. We now present a roadmap of how to construct
R.

Let pi,j(1 <= i, j <= N) denote the (i, j)-th pixel in
N × N pixels. A grid region is a union of pixels. Let
ui,j be the number of records that meet (B, C) ∈ pi,j ,
and let vi,j be the sum of the objective attribute val-
ues of all the records that satisfy (B, C) ∈ pi,j , which
is

∑
t meets (B,C)∈p(i,j) t[A]. Using those notations, we

can represent the stamp point associated with R by
(
∑

pi,j ⊂=R ui,j ,
∑

pi,j ⊂=R vi,j), which maximizes y − θx.

Since
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Fig. 4 Guided Branch-and-Bound Search

∑

pi,j ⊂=R

vi,j − θ
∑

pi,j ⊂=R

ui,j =
∑

pi,j ⊂=R

(vi,j − θui,j),

R maximizes
∑

pi,j ⊂=R(vi,j − θui,j).

We call vi,j − θui,j the gain of the pixel pi,j . The
problem of computing the region that maximizes the
sum of gains of pixels in the region has been studied.
For a family of x-monotone regions, Fukuda, Morimoto,
Morishita, and Tokuyama presents an O(N2)-time al-
gorithm [4]. For a family of rectilinear convex regions,
Yoda, Fukuda, Morimoto, Morishita, and Tokuyama
gives an O(N3)-time algorithm [12]. Due to the space
limitation, we do not introduce those algorithms. Those
algorithms use the idea of dynamic programming, and
they connect an interval in each column from lower in-
dex i to higher one to generate an x-monotone (or, rec-
tilinear) region.

Since we have an efficient algorithm for generat-
ing the region associated with the stamp point on the
convex hull at which the line with a slope θ touches,
it remains to answer how many trials of hand-probing
procedure are necessary to find the region that mini-
mizes the entropy. If n is the number of given records,
there could be at most n stamp points on the upper
hull, and therefore we may have to do n trials of hand-
probing by using n distinct slopes. Next we present
a technique that is expected to reduce the number of
trials to be O(log n) in practice.

Guided Branch-and-Bound Search

Using a tangent line with the slope θ = 0, we can touch
the rightmost point on the convex hull. Let a be an
aribitrary large real number such that we can touch the
leftmost point on the convex hull by using the tangent
line with slope a. Thus using slopes in [0, a], we can
scan all the points on the upper hull. We then perform
the binary search on [0, a] to scan the convex hull.

During the process we may dramatically reduce the
search space. Figure 4 shows the case when we use two
tangent lines to touch two points P and Q on the con-
vex hull, and R denotes the point of intersection of the
two lines. Let X be an arbitrary point inside the trian-
gle PQR. From the concavity of the entropy function,
we immediately obtain

min{Ent(P ), Ent(Q), Ent(R)} <= Ent(X).

If min{Ent(P ), Ent(Q)} <= Ent(R), we have
min{Ent(P ), Ent(Q)} <= Ent(X), which implies that
it is useless to check whether or not there exists a point
between P and Q on the hull whose entropy is less than
min{Ent(P ), Ent(Q)}. In practice, most of subinter-
vals of slopes are expected to be pruned away during the
binary search. This guided branch-and-bound search
strategy has been experimentally evaluated [3], [8]. Ac-
cording to experimental tests the number of trials of
hand-probing procedure is O(log n).

5. Computing Optimal Conjunctions and Dis-
junctions

Suppose that we are given a set S of tests on condi-
tional attributes. We also assume that S contains the
negation of an arbitrary test in S. We call a conjunc-
tion positive (negative, resp.) if it is a positive (nega-
tive) test. We will show that it is NP-hard to compute
the positive conjunction (the positive disjunction, resp.)
that minimizes the entropy among all positive conjunc-
tions (positive disjunctions) of tests in S. Also, it is
NP-hard to compute the positive conjunction (positive
disjunction) that maximizes the interclass variance.

Let T1 ∧ . . .∧ Tk be a positive conjunction of tests
in S. Observe that the entropy (the interclass vari-
ance, resp.) of the splitting by T1 ∧ . . . ∧ Tk is equal
to the entropy (the interclass variance) of the splitting
by ¬(T1 ∧ . . . ∧ Tk). ¬(T1 ∧ . . . ∧ Tk) is equivalent to
¬T1 ∨ . . .∨¬Tk, which is a negative disjunction of tests
in S. Thus the negation of the optimal positive con-
junction gives the optimal negative disjunction. As re-
marked in Subsection 2.5, computing a negative test
can be done by using a way of computing a positive
test, and therefore we will prove the intractability of
computing the optimal disjunction.
Theorem 5.1: Given a set S of tests on conditional
attributes such that S contains the negation of any test
in S, it is NP-hard to compute the positive disjunction
of tests in S that minimizes the entropy value among
all positive disjunctions. It is also NP-hard to compute
the positive disjunction that maximizes the interclass
variance.
Proof: Here we present a proof for the case of the en-
tropy. The case of the interclass variance can be proved
in a similar manner. We reduce the difficulty of the
problem to the NP-hardness of MINIMUM COVER [5].
Let V be a finite set, and let C be a collection of subsets
of V . A sub-collection C ′(⊂ C) is a cover of V if any
element in V belongs to one of C ′. Suppose that Cmin

is a cover that minimizes the number of subsets in it.
It is NP-hard to compute Cmin.

Suppose that V contains a elements, and C con-
tains c subsets of V . We call elements in V black. Let
b be a number greater than a and c, generate a set W
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Fig. 5 Each subset is extended with a unique white element.

Fig. 6 Points Associated with Sub-collections

of new b elements, and call them white. We then ex-
tend each subset in C by adding a unique white element
that does not appear elsewhere. We do not use (b − c)
white elements for this extension. Figure 5 illustrates
this operation. In the figure each hyperedge shows a
subset in C. After this extension, C and Cmin become
collections of subsets of V ∪ W .

In what follows, we treat elements in V ∪ W as
records in a database. We assume that the objective
attribute is true (false, resp.) for black (white) records
in V ∪ W . We then identify each subset in C with a
test such that all elements in the subset meet the test,
while none of elements outside the subset satisfy the
test. We also identify a collection C ′(⊂=C) with the
disjunction of tests that correspond to subsets in C ′.
We then show that the disjunction corresponding to
Cmin minimizes the entropy, which means that finding
the optimum disjunction is NP-hard.

With each sub-collection C ′(⊂=C) such that the
disjunction identified with C ′ is positive, we associate
a point (x, y) in an Euclidean plane such that x is the
number of records in C ′, and y is the number of black
records in C ′. See Figure 6. Ent(x, y) gives the en-
tropy of the disjunction identified with C ′. Let k de-
note the number of subsets in the minimum cover Cmin.
(a + k, a) is associated with Cmin. We prove that all
the points associated with collections of subsets of C
fall in the gray region in Figure 6.

All the points lie in the upper side or on the line

connecting the origin and (a+ b, a), because each point
corresponds to a positive disjunction. We show that all
the points lie under or on the line between (a + k, a)
and (a − k, a − k). To this end, it is enough to prove
that any C ′ ⊂ C that contains a−l(l >= 1) black records
must also have at least k − l white records. The proof
is an induction on l, and consider the case when l = 1.
Suppose that the number of white records is less than
k − 1. We can immediately construct a cover of V by
adding to C ′ a subset X that contains the remaining
black records. Note that the number of white records
in C ′ ∪{X} is less than k, which contradicts the choice
of Cmin. The argument carries over to the case when
l > 1.

We then prove that Ent(a−k, a−k) > Ent(a+k, a)
for k >= 1.

Ent(a − k, a − k)

=
a − k

a + b
ent(

a − k

a − k
) +

b + k

a + b
ent(

k

b + k
)

=
1

a + b
(−k ln

k

b + k
− b ln

b

b + k
)

Because ent(1) = 0
Ent(a + k, a)

=
a + k

a + b
ent(

a

a + k
) +

b − k

a + b
ent(

a − a

b − k
)

=
1

a + b
(−k ln

k

a + k
− a ln

a

a + k
)

Because ent(0) = 0

Let f(x) denote −k ln k
x+k − x ln x

x+k . We then have
Ent(a − k, a − k) = 1

a+bf(b) and Ent(a + k, a) =
1

a+bf(a). Since f ′(x) = ln x+k
x > 0 for x > 0. Be-

cause b > a > 0, we have f(b) > f(a), and hence
Ent(a − k, a − k) > Ent(a + k, a).

From Theorem 2.1, Ent(x, y) is maximum at any
point (x, y) on the line between (0, 0) and (a+b, a), and
Ent(x, y) is a concave function on the gray quadrilat-
eral in Figure 6. Since Ent(a−k, a−k) > Ent(a+k, a),
the entropy of any point in the gray quadrilateral is no
less than the entropy of (a+k, a). Recall that (a+k, a)
corresponds to the positive disjunction associated with
Cmin. Consequently the positive disjunction that min-
imizes the entropy corresponds to Cmin.
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Appendix

Proof of Theorem 2.1

We first prove the concavity of Ent(x, y). For any
x>y>0 and any real numbers δ1 and δ2, let V denote
δ1x + δ2y. It suffices to prove ∂2Ent(x, y)/∂V 2 <= 0.
Recall that

Ent(x, y) =
x

n
ent(

y

x
) +

n − x

n
ent(

m − y

n − x
).

Define f(x, y) = x
nent( y

x ). Then,

Ent(x, y) = f(x, y) + f(n − x, m − y) (1)

To prove ∂2Ent(x, y)/∂V 2 <= 0, it is sufficient to show
the following inequalities:

∂2f(x, y)/∂V 2 <= 0 ∂2f(n − x, m − y)/∂V 2 <= 0.

Here we will prove the former inequality. The latter can
be proved in a similar way. When δ1, δ2 |= 0, we have:

f(x, y) =
1
n

(−y log
y

x
− (x − y) log(1 − y

x
))

∂f(x, y)
∂V

=
∂f(x, y)

∂x

∂x

∂V
+

∂f(x, y)
∂y

∂y

∂V

=
1
n

(− log(x − y) + log x)
1
δ1

+

1
n

(− log y + log(x − y))
1
δ2

∂2f(x, y)
∂V 2

=
1
n

((− 1
x − y

+
1
x

)
1
δ1

+
1

x − y

1
δ2

)
1
δ1

+

1
n

(
1

x − y

1
δ1

+ (−1
y
− 1

x − y
)

1
δ2

)
1
δ2

= − 1
nδ2

1δ
2
2x(x − y)y

(δ2y − δ1x)2

<= 0 (x > y > 0)

When δ1 = 0, δ2 |= 0, V = δ2y, and we have:
∂f(x, y)

∂V
=

1
n

(− log y + log(x − y))
1
δ2

∂2f(x, y)
∂V 2

=
1
n

(−1
y
− 1

x − y
)

1
δ2
2

=
1
n

−x

(x − y)y
1
δ2
2

<= 0 (x > y > 0)

The case when δ1 |= 0 and δ2 = 0 can be handled in a
similar way.

Next we prove that Ent(x, y) is maximum when
y/x = m/n. From Equation (1), observe that for any
0 <= y <= x, Ent(x, y) = Ent(n − x, m − y). According
to the concavity of Ent(x, y), we have

Ent(x, y) =
1
2
Ent(x, y) +

1
2
Ent(n − x, m − y)

<= Ent(
x + n − x

2
,
y + m − y

2
)

= Ent(
n

2
,
m

2
),

which means that Ent(x, y) is maximum when (x, y) =
(n

2 , m
2 ). Finally we can prove that Ent(x, y) is constant

on y = (m/n)x, because

Ent(x, y)

=
x

n
(−m

n
log

m

n
− (1 − m

n
) log(1 − m

n
)) +

n − x

n
(−m

n
log

m

n
− (1 − m

n
) log(1 − m

n
))

= −m

n
log

m

n
− (1 − m

n
) log(1 − m

n
).

Since (n
2 , m

2 ) is on y = (m/n)x, Ent(x, y) is maximum
when y/x = m/n.

Proof of Theorem 2.2

The interclass variance can be transformed as follows:

|R1|(µ(R1) − µ(R))2 + |R2|(µ(R2) − µ(R))2
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= −|R|µ(R)2 + (|R1|µ(R1)2 + |R2|µ(R2)2),

because |R| = |R1|+ |R2| and |R1|µ(R1)+ |R2|µ(R2) =
|R|µ(R). Since |R| and µ(R) are constants, the maxi-
mization of the interclass variance is equivalent to the
maximization of |R1|µ(R1)2 + |R2|µ(R2)2.

On the other hand, the intraclass variance can be
transformed as follows:

∑
t∈R1

(t[A] − µ(R1))2 +
∑

t∈R2
(t[A] − µ(R2))2

|R|

=
∑

t∈R t[A]2 − (|R1|µ(R1)2 + |R2|µ(R2)2)
|R| ,

because
∑

t∈R1
t[A] = |R1|µ(R1) and

∑
t∈R2

t[A] =
|R2|µ(R2). Since R is fixed,

∑
t∈R t[A]2 is a con-

stant. Thus the minimization of the intraclass vari-
ance is equivalent to the maximization of |R1|µ(R1)2 +
|R2|µ(R2)2 that is also equivalent to the maximization
of the interclass variance.

Proof of Theorem 2.3

The proof is similar to the proof of Theorem 2.1.
We first prove that V ar(x, y) is a convex function for
0 < x < n. For any 0 < x < n and any δ1 and δ2, let
V denote δ1x + δ2y. Here we will prove the case when
δ1, δ2 |= 0. The other cases can be shown similarly. It
is sufficient to prove that ∂2V ar(x, y)/∂V 2 >= 0. Recall
that

V ar(x, y) = x(
y

x
− m

n
)2 + (n − x)(

m − y

n − x
− m

n
)2.

Define g(x, y) = x( y
x − m

n )2. Then,

V ar(x, y) = g(x, y) + g(n − x, m − y). (2)

We prove ∂2V ar(x, y)/∂V 2 >= 0 by showing the follow-
ing two inequalities:

∂2g(x, y)/∂V 2 >= 0 ∂2g(n − x, m − y)/∂V 2 >= 0.

We prove the former case. The latter can be shown in
a similar manner.

∂g(x, y)
∂V

=
∂g(x, y)

∂x

∂x

∂V
+

∂g(x, y)
∂y

∂y

∂V

=
1
δ1

{(m

n
)2 − (

y

x
)2} +

2
δ2

(
y

x
− m

n
)

∂2g(x, y)
∂V 2

=
2
x

(
y

δ1x
− 1

δ2
)2 >= 0

Next we prove that V ar(x, y) is minimum when
y/x = m/n. From Equation (2), we have V ar(x, y) =
V ar(n − x, m − y). From the convexity of V ar(x, y),

V ar(x, y) =
1
2
V ar(x, y) +

1
2
V ar(n − x, m − y)

>= V ar(
x + n − x

2
,
y + m − y

2
)

= V ar(
n

2
,
m

2
),

which implies that V ar(x, y) is minimum when (x, y) =
(n

2 , m
2 ). It is easy to see that V ar(x, y) = 0 when

y/x = m/n. Since (n
2 , m

2 ) is on y/x = m/n, V ar(x, y)
is minimum when y/x = m/n.
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