
Weighted Majority Decision among Several

Region Rules for Scienti�c Discovery

Akihiro Nakaya, Hideharu Furukawa�, and Shinichi Morishita

University of Tokyo, 4-6-1 Shirokanedai, Minato Ward, Tokyo 108-8639, JAPAN

fnakaya, morisg@ims.u-tokyo.ac.jp, �

furukawa@is.s.u-tokyo.ac.jp
�Currently with the National Police Agency

Abstract. We consider the classi�cation problem of how to predict the

values of a categorical attribute of interest using the other numerical

attributes in a given set of tuples. Decision by voting such as bagging

and boosting attempts to enhance the existing classi�cation techniques

like decision trees by using a majority decision among them. However,

a high accuracy ratio of prediction sometimes requires complicated pre-

dictors, and makes it hard to understand the simple laws a�ecting the

values of the attribute of interest. We instead consider another approach

of using of at most several fairly simple voters that can compete with

complex prediction tools. We pursue this idea to handle numeric datasets

and employ region splitting rules as relatively simple voters. The results

of empirical tests show that the accuracy of decision by several voters

is comparable to that of decision trees, and the computational cost is

inexpensive.

1 Introduction

1.1 Motivating Example

Large Decision Tree. Fig. 1A shows a sample decision tree generated by the
See5/C5.0 program [13] with the default parameters. The 900-tuple training
dataset is randomly selected from the german-credit (24 numerical) dataset of
1000 tuples, which was obtained from the UCI Machine Learning Repository [9].
This tree contains 87 leaf nodes, and its prediction error ratio for the remaining
100 tuples of the dataset is 27.0%. However, as shown by the number of the
leaf nodes and the nested structure of the tree, this decision tree is relatively
diÆcult to interpret and thus not always suitable for representation of scienti�c
knowledge.

Region Rules for Readability. To address the present classi�cation problem, we
used a weighted majority decision among region rules in which the component
rules were relatively powerful and visually understandable. When we consider
a pair of numeric attributes as a two-dimensional attribute, we can compute
a line partition of the corresponding two-dimensional space so that it properly
classi�es the tuples according to a judgment whether or not a tuple is inside the
line partition (region). We call this type of classi�er a region rule. For example,
the �ve region rules presented in Fig. 1B were constructed using the same training
dataset as for the decision tree in Fig. 1A, and the achieved prediction error ratio
(27.0%) was nearly identical to that for the decision tree.

2 Akihiro Nakaya et al.

A1>2:
|___A11>2:
| |___A6>2!1
| | A6<=2:
| | |___A19>0!2
| | A19<=0:
| | |___A4<=67!1
| | A4>67!2
| A11<=2:
| |___A16>0:
| |___A2<=15!1
| | A2>15:
| | |___A24>0!2
| | A24<=0:

/-| | |___A12<=1!1
| | A12>1!2
| A16<=0:
| |___A6>3:
| |___A4<=8!2
| | A4>8!1
| A6<=3:
| |___A20>0!2
| A20<=0:
| |___A10<=34!1
| A10>34:
| |___A5>3!2
| A5<=3:
| |___A7<=2!1
| A7>2!2
A1<=2:
|___A3<=1:

|___A21<=0:
| |___A19>0!1
| | A19<=0:
| | |___A17<=0!2
| | A17>0:
| | |___A6<=4!1
| | A6>4!2
| A21>0:
| |___A16>0!2
| A16<=0:
| |___A5>1!1
| A5<=1:
| |___A23>0:
| |___A8<=3!1
| | A8>3!2
| A23<=0:
| |___A3>0!2
| A3<=0:
| |___A2>33!2
| A2<=33:
| |___A7<=2!1
| A7>2!2
|%
Æ (cont.)

&
Æ
|
A3>1:
|___A2<=22:

|___A18<=0:
| |___A4<=31!1
| | A4>31:
| | |___A3<=3!1
| | A3>3!2
| A18>0:
| |___A3>2:
| |___A23>0!1
| | A23<=0:
| | |___A24<=0:
| | |___A7<=2!2
| | | A7>2!1
| | A24>0:
| | |___A11>2!1
| | A11<=2:
| | |___A10<=31!1
| | A10>31!2
| A3<=2:
| |___A11<=2:
| |___A6>3!2
| | A6<=3:
| | |___A14>1!1
| | A14<=1:
| | |___A21<=0!2
| | A21>0:
| | |___A4<=14!2
| | A4>14!1
| A11>2:
| |___A9>3:
| |___A14<=1!1
| | A14>1!2
| A9<=3:
| |___A1>1:
| |___A24<=0!1
| | A24>0:
| | |___A7>2!1
| | A7<=2:
| | |___A16>0!2
| | A16<=0:
| | |___A2<=10!2
| | A2>10!1
| A1<=1:
| |___A20>0:
| |___A4>16!1
| | A4<=16:
| | |___A9>2!2
| | A9<=2:
| | |___A24<=0!1
| | A24>0!2
| A20<=0:
| |___A4>59!2
| A4<=59:
| |___A13>1!1
| A13<=1:
| |___A9>2:
| |___A4<=25!2
| | A4>25!1
| A9<=2:
| |___A7>2!1
| A7<=2:
| |___A2<=9!1
| A2>9!2
|%
� (cont.)

&
�
|
A2>22:
|___A19>0:

|___A6<=1!1
| A6>1!2
A19<=0:
|___A16>0:

|___A1<=1:
| |___A14<=1!2
| | A14>1:
| | |___A10<=34!2
| | A10>34!1
| A1>1:
| |___A24<=0!2
| A24>0:
| |___A2<=27!1
| A2>27:
| |___A11<=2!2
| A11>2:
| |___A6<=4!2
| A6>4!1
A16<=0:
|___A5>3:

|___A1>1!1
| A1<=1:
| |___A12<=1!2
| A12>1!1
A5<=3:
|___A2>42:

|___A6<=1!1
| A6>1!2
A2<=42:
|___A18<=0!1

A18>0:
|___A17>0:

|___A10<=28!2
| A10>28!1
A17<=0:
|___A7<=1!2

A7>1:
|___A13>1:

|___A1<=1!2
| A1>1:
| |___A10<=34!1
| A10>34!2
A13<=1:
|___A6<=3:

|___A3>2!2
| A3<=2:
| |___A10<=31!1
| A10>31!2
A6>3:
|___A1>1!1

A1<=1:
|___A2<=27!1

A2>27!2

(A) An example of a large decision tree generated by the See5/C5.0 program. The

training dataset is 900 tuples of the german-credit dataset. This tree contains 87 leaf

nodes. The prediction error ratio for the remaining 100 tuples of the dataset was 27.0%.

Ai denotes the ith attribute.

A1

A5

A1

A9

A1

A2

A1

A11

A1

A6

(B) Region rules for the german-credit dataset. Used training dataset (900 tuples) and

test data (100 tuples) were the same as for the above decision tree. The prediction

error ratio of weighted majority decision among these �ve rules was 27.0%. Ai denotes

the ith attribute.

Fig. 1. Decision tree and region rules.

Weighted Majority Decision among Simple Rules for Scienti�c Discovery 3

1.2 Decision Tree and Entropy of a Splitting

Decision Tree. Let us consider the attributes of tuples in a database. An at-
tribute is called Boolean if its range is f0, 1g, categorical if its range is a discrete
set f1,: : : ; kg for some natural number k, and numeric if its range is the set of
real numbers. Each data tuple t has m+ 1 attributes Ai for i = 0; 1; : : : ;m. We
treat one Boolean attribute as special, denote it by W , and call it the objective
attribute. The other attributes are called conditional attributes.

The decision tree problem is as follows: A set U of tuples is called positive

(resp. negative) if for a tuple t, the probability that its objective attribute is
1 (resp. 0) is at least �1 (resp. �2) in U , for given thresholds �1 and �2. We
would like to classify the set of tuples into positive subsets and negative subsets
by using tests with conditional attributes. Let us consider a rooted binary tree,
each of whose internal nodes is associated with a test that has attributes. We
associate each leaf node with the subset of tuples satisfying all tests on the path
from the root to the leaf. Every leaf is labeled as either positive or negative
on the basis of the class distribution in the subset associated with it. Such a
tree-based classi�er is called a decision tree.

Entropy of a Splitting. First, we de�ne the entropy of a dataset S with respect
to the objective attribute. Assume that the dataset S contains n tuples. To
formalize our de�nition of entropy, we consider a more general case in which the
objective attribute W is a categorical attribute taking values in f1,2,: : : ; kg. Let
pj be the relative frequency with which W takes the value j in the dataset S,
the entropy of the dataset S with respect to the objective attribute W is de�ned
as:

Ent(S) = �
X

j=1;:::;k

pj log pj : (1)

Using the de�nition of the entropy of the dataset S, the entropy of a splitting

is de�ned as follows. Here, let us consider a splitting of the dataset S into two
subsets, S1 and S2 with n1 and n2 data, respectively. The entropy of the splitting
is de�ned by

Ent(S1;S2) =
n1

n

Ent(S1) +
n2

n

Ent(S2): (2)

To reduce the size (the number of nodes) of a decision tree Quinlan introduced a
heuristics using a criterion called the gain ratio [11]. The gain ratio is calculated
using the values of entropy de�ned as above, and expresses the information
generated by a splitting. The heuristics greedily constructs a decision tree in
a top-down, breadth-�rst manner according to the gain ratio. At each internal
node, the heuristics examines all the candidate tests, and chooses the one for
which the associated splitting of the set of tuples attains the maximum gain
ratio.

1.3 Improvement of Prediction Accuracy by Voting

Decision by Voting. To improve the power of existing classi�ers, we can employ
a strategy called decision by voting. This approach includes techniques called

4 Akihiro Nakaya et al.

bagging [2] and boosting [5, 15] which are used in the area of machine learning. As
the term decision by voting suggests, these techniques make the �nal judgment
by a majority decision among component tests (voters). Systems that perform
decision by voting are called ensemble classi�ers or combined classi�ers and
attempt to render the total prediction accuracy of voters in the aggregate better
than that for each of the voters alone. For example, we can use a decision tree
as a voter.

Bagging iterates voter generation using a set of tuples which are sampled with
replacement from the original training dataset. Due to the randomness in the
sampling of tuples, each voter can have di�erent characteristics in prediction and
the majority decision works among them. Boosting maintains weights of tuples in
the training dataset. Each iteration generates a voter using the weighted tuples
as the training dataset and updates the weights of the tuples to force the next
voter generation focus on the mis-predicted tuples. Thus, we can prepare a set of
voters with di�erent characteristics and de�ne the weight of each voter according
to its prediction accuracy in the training dataset.

Previous experimental results have shown that bagging and boosting work
well even with relatively small numbers of voters, and that the contribution of
an additional voter to reduction of the prediction error ratio decreases as the
number of voters increases [14, 1, 15].

1.4 Rule Readability towards Scienti�c Discovery

Simplicity of Rules. Accuracy is obviously a requisite element for prediction of
attribute values. However, a high accuracy ratio of prediction sometimes requires
a large-sized predictor. For example, the size of the whole decision tree can grow
up to more than a few hundred nodes. If we use a majority decision among
a set of large decision trees this is a great disadvantage with respect to rule
readability. In some cases, especially from the viewpoint of knowledge discovery,
we want to understand the simple laws a�ecting the predictor. For instance, in
the bio-medical area, a predictor may make a decision as to whether or not a
person is genetically a�ected by a particular level of gene expression in a cell. In
this situation it is also important to understand the rules used in the predictor.
However, a large-sized predictor may be accurate and still not always readable.

Reduction of the size of a predictor is indispensable to meet the requirement
for readability. Focusing on the size of a decision tree, for example, Morimoto et
al. [7] reduced the size of a decision tree by pruning ine�ective internal nodes and
by using a relatively powerful test on each internal node that utilized a region

rule instead of simple inequalities. As previously described, a region rule classi�es
tuples according to a judgment whether or not a tuples has particular values for
two attributes. On each plane spanned by an arbitrary pair of the conditional
attributes, the optimal region is computed. The two axes for a region rule on
an internal node are selected so that the entropy of a splitting on the node is
minimized. A region is called a rectilinear convex region if both its intersection
with any vertical line and its intersection with any horizontal line are always
undivided. Among the types of two-dimensional regions, the use of rectilinear

Weighted Majority Decision among Simple Rules for Scienti�c Discovery 5

convex regions on internal nodes has been reported to show good performance
[16] for the several datasets of the UCI Machine Learning Repository [9].

1.5 Weighted Majority among Relatively Powerful Voters

Based on the above considerations, a natural direction of constructing a simple
predictor is to carry out a weighted majority decision among a small number
(e.g., less than ten) of relatively powerful but readable rules, such as region rules.

In the remainder of this article, we introduce a simple method of obtaining a
weighted majority decision among a set of region rules and empirically evaluate
the accuracy and the size of predictors using the example numerical datasets
with a Boolean or categorical objective attribute from the UCI Machine Learning
Repository.

2 Method|Decision by Majority

Construction and Choice of Voters. First, we consider the case where the ob-
jective attribute is Boolean. Let W be the objective attribute with Boolean
values and A = fA1; : : : ; Amg be the set of numeric conditional attributes. We
selected the voters from candidate region rules according to the entropy of the
splitting in the training dataset. We have mC2 planes spanned by the pairs of
conditional attributes, and calculate the optimum rectilinear convex region (i.e.,
one that minimizes the entropy) on each plane. This calculation can be carried
out in practice using the polynomial-time algorithm developed by Yoda et al.
[16]. These region rules are used as the candidates of voters. The obtained mC2

regions (voter candidates) are sorted in increasing order of the entropy of the
splitting and the k-best region rules are used as the voters (k is a given constant
number), with Ri denoting the region used in the i-th best region rule.

Weight of Voters and Prediction. Selected region rules (voters) vote on whether
or not the objective attribute of tuple t is 1. The weight of each voter is expressed
as a value between 0 and 1. When the summation of these weights exceeds half
of the number of the voters, they predict the objective attribute of tuple t is 1.
We calculated the weight of a voter using the prediction accuracy in the training
dataset. For the set of tuples which are inside (resp. outside) the region R, the
ratio of the tuples whose objective attribute is 1 is calculated, and p(R) (resp.
p(�R)) denotes this ratio. When we can assume that the distribution of attribute
values is the same between the training dataset and the test dataset, we can
evaluate the weight of a voter using those ratios. For a given tuple t, during the
process of majority decision, the weight of the i-th voter using Ri is de�ned as
follows:

w(t; Ri) =

�
p(Ri) if t 2 Ri

p(�Ri) if t 62 Ri
: (3)

If the tuple t is inside the region Ri, the upper de�nition is used to calculate the
weight of a voter. In the same way, if the tuple t is outside the region Ri we can

6 Akihiro Nakaya et al.

calculate the weight of a voter using the lower de�nition. The latter is based on
the fact that the objective attribute of a tuple outside the region is predicted to
be 0 at possibility 1�p(�Ri) and it equivalently means that its objective attribute
is 1 at possibility p(�Ri).

The summation of the weights of the k voters, g(t) =
Pk

i=1 w(t; Ri), indicates
the degree of possibility that the objective attribute of tuple t is 1. If the value
of g(t) is greater than a threshold k=2, the majority decision predicts that the
objective attribute of tuple t is 1 otherwise 0.

Handling Categorical Objective Attribute. In the previous sections, we suppose
the objective attribute is Boolean. In this section we expand our approach to
handle cases in which the objective attribute is categorical.

We reduced a classi�cation problem with the categorical objective attribute
to one with Boolean objective attribute using twoing [3]. Let C = f1; : : : ; Jg be
the set of values of the objective attribute of the original problem, for 1 � j � J ,
we generate a series of sub-predictors Rj each of which predicts only whether
or not the objective attribute of a tuple is j. As the sub-predictor Rj , we used
a weighted majority decision among k region rules introduced in the case with
the Boolean objective attribute.

Let Rj
i be the ith-best region rule which predicts the objective attribute of

a tuple is j or not and R
j = fRj

1
; : : : ; R

j
kg denote the jth sub-predictor (k is

the number of voters). Using the rede�ned weight of voters w0 as follows, Rj

predicts the objective attribute of a tuple is j or not:

w
0(t; Rj

i) =

�
p(Rj

i) if t 2 R

j
i

p(�Rj
i) if t 62 R

j
i

: (4)

For 1 � j � J , we carry out weighted majority decision among region rules
and sum up the weights of voters: gj(t) =

Pk
i=1 w

0(t; Rj
i). Here, gj(t) gives the

prediction accuracy of the jth sub-predictor. When the sth sub-predictor is most
accurate, the value of the objective attribute can be predicted as s. Note that if
a sub-predictor uses k voters out of mC2 candidate voters, the total number of
the region rules used for prediction is k � J .

Fig. 2 shows an example of the region rules for a categorical objective at-
tribute. This example shows the region rules (R1, R2, and R

3, k = 7) for the
waveform+noise dataset obtained from the UCI Machine Learning Repository.
When the predictor says that the objective attribute of a tuple is 1, for instance,
one must see only the seven region rules R1 = fR1

1
; : : : ; R

1

7
g for the related

conditional attributes.

3 Experimental Results

Test Datasets. We used eight public datasets with numeric conditional attributes
(Table 1) that we acquired from the UCI Machine Learning Repository [9].
These datasets are indicated in Table 1 along with the corresponding numbers
of classes, tuples, and attributes.

Weighted Majority Decision among Simple Rules for Scienti�c Discovery 7

R
1

11

10

12

11

11

9

11

6

11

5

11

7

12

10

R
2

17

15

15

10

18

15

16

15

18

17

15

7

17

16

R
3

7

5

13

5

7

6

13

6

6

5

13

7

12

7

Fig. 2. Rectilinear convex region rules for a dataset with a categorical objective at-

tribute. The training dataset is 4500 tuples of the waveform+noise dataset.

Implementations. We implemented the algorithm using the C++ language with
the POSIX thread library on a Sun Microsystems Enterprise 100001. We gener-
ated the number mC2 of candidate voters in a parallel manner (m is the number
of the conditional attributes). In a sequential execution, only a single thread
iterates the generation of the candidates mC2 times. We split this loop into N
sub-loops and executed them using N threads on the processors. The number
of threads N is decided according to the number of the attributes so that the
calculation is evenly distributed among threads. The tuple data is stored in an
array in the main memory before the creation of threads, and the threads ac-
cess it during the generation of candidates. This memory access can be carried
out without mutual exclusion, since the table is never updated. We sort the ob-
tained voter candidates in increasing order of their entropy and use the k-best
candidates as the voters.

For example, when the german-credit dataset (the number of the conditional
attributes is 24) is used as the input data, the total number of iterations is 24C2 =
276 = 46� 6. Because the number of the available processors is 64, we split the
iteration into 46 sub-loops, each of which generates six voter candidates. Using
46 threads, it takes 15 seconds to calculate the optimum regions on the planes
spanned by all the pairs of conditional attributes. Compared to the elapsed time
with only a single thread (344 seconds), more than 20-fold acceleration ratio was
achieved.

Classi�cation Capability. Using the datasets shown in Table 1, a ten-fold cross-
validation was carried out for each combination of the grid resolution and the

1 Commercially available shared-memory parallel computer. In this experiment we

used an E10000 with 64 UltraSPARCII (250MHz) processors.

8 Akihiro Nakaya et al.

Table 1. Summary of the eight datasets used in our experiments.

Dataset #Class #Tuple #Attrib.

breast-cancer-wisconsin* 2 699 9

german-credit (numerical) 2 1000 24

liver-disorders 2 345 6

pima-indians-diabetes 2 768 8

balance-scale 3 625 4

waveform 3 5000 20

waveform+noise 3 5000 40

vehicle 4 846 18

*We assigned the average value of the attribute to
the 16 missing values contained.

Table 2. Summary of ten-fold cross-validation results.

Region Region See5/C5.0 See5/C5.0

Dataset Voting Single Tree Single Tree Boosting

Err(%) #R N �N Err(%) #Leaf Err(%) #Leaf Err(%) #Leaf

breast-cancer. 3.0 8 10�10 4.2 3.3 5.0 13.7 3.7 165.7

german-credit 27.1 5 20�20 23.8 3.6 27.7 77.5 25.1 786.6

liver-disorders 34.2 4 20�20 38.8 3.2 35.6 25.7 30.4 217.8

pima-indians. 23.6 10 20�20 25.1 2.1 26.1 28.8 25.0 457.2

balance-scale 13.1 6�3 6�6 15.5 34.7 22.6 43.7 18.3 610.1

waveform 18.4 7�3 25�25 21.0 33.2 23.3 301.1 17.7 2325.3

waveform+n. 18.0 11�3 30�30 21.8 34.6 24.3 305.4 17.1 2253.7

vehicle 29.6 7�4 30�30 28.5 12.2 28.0 70.9 24.1 681.3

number of the voters in order to evaluate the eÆciency of the proposed method.
The grid resolutions used were N � N (N = 3, 5, 10, 15, 20, 25, 30, and 35).
For the breast-cancer-wisconsin and balance-scale datasets, we used 10 and 6
as the values of N , respectively, since the attribute values of these datasets are
numerical but discrete.

Table 2 presents the results of the ten-fold cross-validation tests. In this
table, the \Region Voting" column shows the results of the majority decision
among rectilinear convex region rules. #R is the number of the region rules
used for weighted majority decision. N �N is the optimum grid resolution. For
the datasets having the categorical objective attribute (lower four cases), the
numbers of the used region rules are k�#Class, where k is the number of the
voters used to predict whether or not a tuple belongs to a particular class. For
example, the dataset in Fig. 2 uses 7� 3 region rules. The \Region Single Tree"
column shows the error ratio and the tree size (number of the leaf nodes) of
the decision trees using rectilinear convex region rules on each internal node
(the original data appears in Table 3 of [8]). Note that the program used to
generate rectilinear convex regions in this article is di�erent from that used in

Weighted Majority Decision among Simple Rules for Scienti�c Discovery 9

(a) breast-cancer-wisconsin (b) german-credit (24 numerical)

0.03

0.035

0.04

0.045

0.05

0.055

1 2 3 4 5 6 7 8 9 10

E
rr

or
 R

at
io

Number of Voters

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

1 2 3 4 5 6 7 8 9 10

E
rr

or
 R

at
io

Number of Voters

(c) liver-disorders (d) pima-indians-diabetes

0.34

0.345

0.35

0.355

0.36

0.365

0.37

1 2 3 4 5 6 7 8 9 10

E
rr

or
 R

at
io

Number of Voters

0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

2 4 6 8 10 12

E
rr

or
 R

at
io

Number of Voters

Fig. 3. The relation between #voters and the error ratio of decision by majority

(Boolean). Note that in the liver-disorder dataset, misclassi�cation of a single tuple

in its 35-tuple test data makes the error ratio 2.9% high. Thus, a dataset with rela-

tively small number of tuples can cause oscillation in the graph easily.

Morimoto et al. [8]; in the latter study, optimized grid regions were generated
with respect to the density of the tuples in a grid cell. The \See5/C5.0 Single
Tree" and \See5/C5.0 Boosting" columns show the results of the decision tree
using guillotine cutting on each internal node (generated by the See5 program
[13] with default parameters). The former column shows the results by a single
tree, and the latter shows the boosted results by ten component classi�ers. The
size of a boosted classi�er is estimated by the summation of the size of the ten
component classi�ers.

For the datasets with Boolean objective attribute (the upper four datasets),
Fig. 3 shows the relation between the number of the voters and the error ratio at
the grid resolution shown in Table 1. For the datasets with a categorical objective
attribute (the lower four datasets), if we regard #R/#Class as the number of
the voters, Fig. 4 shows the relation between the number of the voters and the
error ratio at the grid resolution shown in Table 1.

Comparisons. If the trees can make a high-accuracy prediction using fewer nodes
than voters, then of course the majority decision among region rules might be
useless. However, in a non-trivial dataset it is diÆcult to achieve high accuracy
using only a few guillotine cutting rules.

10 Akihiro Nakaya et al.

(a) balance-scale (b) waveform

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6

E
rr

or
 R

at
io

Number of Voters

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

1 2 3 4 5 6 7 8 9 10

E
rr

or
 R

at
io

Number of Voters

(c) waveform+noise (d) vehicle

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

1 2 3 4 5 6 7 8 9 10 11 12

E
rr

or
 R

at
io

Number of Voters

0.295

0.3

0.305

0.31

0.315

0.32

0.325

0.33

0.335

0.34

0.345

1 2 3 4 5 6 7 8 9 10

E
rr

or
 R

at
io

Number of Voters

Fig. 4. The relation between #voters and the error ratio of decision by majority (cat-

egorical).

� Region Voting vs. See5/C5.0 Boosting. \Region Voting" won over \See5/C5.0
Boosting" in the error ratio on three datasets and competed with the latter on
two datasets (waveform and waveform+noise). However, note that the average
size of boosted trees ranged from 165.7 to 2325.3 for the eight datasets. They
were obviously unreadable.
� Region Voting vs. Region Single Tree. \Region Voting" won over \Region Sin-
gle Tree" in the error ratio on all the datasets except the german-credit dataset.
However, the numbers of leaf nodes of the latter trees were particularly remark-
able in the four datasets with a Boolean objective attribute; the average number
of the leaf nodes for those datasets ranged from 2.1 to 3.6. Apart from the
relatively high error ratio, this might be advantageous for readability.
� Region Voting vs. See5/C5.0 Single Tree. We can conclude that \Region Vot-
ing" won over \See5/C5.0 Single Tree" on all the datasets both in the error ratio
and readability (see also the comparison in Fig. 1).

Computing Cost. We will next consider the computing cost of generating a pre-
dictor. According to Morimoto et al. [8], decision trees using rectilinear convex
regions are more than 10 times as costly as those using guillotine cutting for
a sample dataset (3000 tuples from the waveform dataset with the �rst 12 at-
tributes). The drawback to constructing a tree with rectilinear convex region
rules is that optimal regions must be calculated for all the attribute pairs re-
cursively. In the method proposed here, on the other hand, the generation of

Weighted Majority Decision among Simple Rules for Scienti�c Discovery 11

voter candidates corresponds to that of the root node used in the decision tree
with rectilinear convex region rules. Therefore, the weighted majority decision
method is less costly than the decision tree method with rectilinear convex re-
gion rules. However, it is more costly than a decision tree with guillotine cutting
rules. See5 can generate a decision tree from 900 tuples of the german-credit
dataset in 0.9 seconds.2 On the other hand, our implementation of the weighted
majority decision on an E10000 requires 15 seconds to generate voters using 46
threads.

4 Related Work

Bagging [2] and boosting [5, 15] are methods for improving the total prediction
accuracy by voting among a set of existent component predictors [2, 12, 6, 14,
1]. Most of the studies have focused on improving the accuracy and stability of
the prediction procedure and have used relatively many component predictors
(i.e., more than ten). In terms of enhancing the understandability of predictors,
transformation of the decision tree into a set of if-then rules [11] is one solution.
The worth of such a set is represented by its encoding length theoretically based
on the Minimum Description Length (MDL) Principle, and a good rule set is
calculated by deleting redundant or less accurate rules. As previously described,
relatively powerful rules on decision nodes can reduce the size of the tree. Two
examples are a decision tree using a region rule on a node [8, 16], and a decision
tree adopting a weighted majority decision on the nodes [4]. Although the latter
approach focuses on improving the prediction accuracy, a decision tree consisting
of only a single node with a restricted number of voters can also be used for this
purpose.

5 Concluding Remarks

We have proposed a decision by majority method using relatively powerful pre-
dictors consisting of rectilinear convex region rules. Experiments using diverse
datasets con�rmed that, even with less than ten voters, the achieved prediction
accuracy is better than or comparable to that of decision trees and boosted deci-
sion trees. Our decision majority method uses a list of rectilinear convex region
rules. This list is much smaller and less structured than conventional decision
trees. This property contributes to the readability of the predictors and thus is
especially advantageous from the viewpoint of enhancing the comprehensibility
of the obtained knowledge.

Several topics remain to be pursued in future studies. For example, in the
present method we select the voters according to the entropy and adopt the pre-
diction accuracy for the training dataset as the weight of the voting. Although
this works well experimentally, a more e�ective system might be developed. In
addition, experiments in this article were restricted to the datasets with numeri-
cal conditional attributes and a Boolean or categorical objective attribute. How-
ever, it will also be important to accommodate datasets which include Boolean

2 On a PC/AT compatible with an Intel PentiumII processor (300MHz) and Windows

NT Workstation 4.0.

12 Akihiro Nakaya et al.

and categorical conditional attributes [10] and a numerical objective attribute.
These goals can be realized by a natural expansion of the proposed weighted
majority decision method, and are currently being investigated.

Acknowledgment

We thank Osamu Watanabe for motivating us to pursue this work. This research
is partly supported by a Grant-in-Aid for Scienti�c Research on Priority Areas
\Discovery Science" from the Ministry of Education, Science and Culture, Japan.

References

1. E. Bauer and R. Kohavi, An Empirical Comparison of Voting Classi�cation Algo-

rithms: Bagging, Boosting, and Variants, Machine Learning (to appear).
2. L. Breiman (1994), Bagging Predictors, Technical Report 421, University of Cali-

fornia at Berkeley.
3. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone (1984), Classi�cation

and Regression Trees, Wadsworth.
4. M. Chikamune (1999), Data Mining Using Weighted Classi�cation Rules (in

Japanese), Master thesis of Department of Informatics, Kyushu University,

Hakozaki 6-10-1, Fukuoka 812-8581, Japan.
5. Y. Freund and R. E. Schapire (1995), A Decision-Theoretic Generation of On-Line

Learning and an Application to Boosting, In Proc. of the 2nd European Conference

on Computational Learning Theory (Euro-COLT'95), pp.23{37.
6. Y. Freund and R. E. Schapire (1996), Experiments with a New Boosting Algorithm,

Machine Learning: Proc. of the 13th Int'l Conference, pp.148{156.
7. T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama (1996), Constructing

EÆcient Decision Trees by Using Optimized Numeric Association Rules, In Proc.

of the 22nd Int'l Conference on Very Large Data Bases (VLDB'96), pp.146{155.
8. Y. Morimoto, T. Fukuda, S. Morishita, and T. Tokuyama (1997), Implementation

and Evaluation of Decision Trees with Range and Region Splitting, Constraints 2,

pp.401{427.
9. P. M. Murphy and D. W. Aha (1994), UCI Repository of Machine Learning

Database, University of California, Department of Information and Computer Sci-

ence.
10. A. Nakaya and S. Morishita (1999), Weighted Majority Decision among Region

Rules for Categorical Dataset. In Proc. of the 2nd Int'l Conference on Discovery

Science (to appear).
11. J. R. Quinlan (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann.
12. J. R. Quinlan (1996), Bagging, Boosting and C4.5, In Proc. of the 13th Ameri-

can Association for Arti�cial Intelligence National Conference on Arti�cial Intel-

ligence, pp.725{730, AAAI Press, Menlo Park, CA.
13. Rulequest Research (1999), See5/C5.0, http://www.rulequest.com/.
14. R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee (1998), Boosting the Margin:

a New Explanation for the E�ectiveness of Voting Methods. Annals of Statistics,

26, pp.1651{1686.
15. R. E. Schapire (1999), Theoretical Views of Boosting, In Proc. of the 4th European

Conference on Computational Learning Theory (Euro-COLT'99), pp.1-10.
16. K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama (1997), Com-

puting Optimized Rectilinear Regions for Association Rules, In Proc. of the 3rd

Int'l Conference on Knowledge Discovery and Data Mining (KDD'97), pp.96{103.

