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Although the synergetic effects of multiple marker loci regarding quantitative traits
such as blood glucose level have attracted interest, previous conclusions have been
based on assumptions that each marker locus behaves independently of the other,
leading to approximation. To cope with this problem, this paper focuses on the
effects of multiple genetic factors and tries to find significant marker combinations
by using conjunctive rules regarding genotypes at multiple marker loci. Application
of the proposed method on the OLETF model rat of non-insulin dependentdiabetes
mellitus (NIDDM) has found significant combinations of marker loci with respect
to oral glucose tolerance (OGT).

1 Introduction

Quantitative Trait Loci Analysis. Oral glucose tolerance (OGT), as well
as factors such as body weight, fat weight, and insulin resistance, is an impor-
tant quantitative trait significant to non-insulin dependent diabetes mellitus
(NIDDM). Oral glucose tolerance (measured as the postprandial blood glucose
level) is considered to be regulated by multiple quantitative trait loci (QTLs).
In the investigation of these trait-causing loci, model rat strains of NIDDM
have been developed, and some OGT-related loci have been mapped on the
genome.2,3 In QTL analysis, the genotypes at marker loci and observation of
quantitative trait value in the individuals are given as input data. Marker
genotypes take categorical values while quantitative traits take numerical val-
ues.

Linear Regression and LOD Score. As shown in previous studies,1,3 the
interval mapping method6 based on a simple regression model has been widely
used to map QTLs and find the OGT-related loci. The existence of a QTL
within an interval flanked by a pair of neighboring marker loci is estimated
along the genome. The logarithm of the likelihood ratio of the linkage between
a marker locus and the quantitative trait against no linkage is called the LOD
score (discussed later) and is calculated at each marker locus (or a putative
locus in an interval with the genotype estimated from the flanking marker loci).
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The OLETF Model Rat. A previous study employ-
ing the LOD score has identified OGT-causing QTLs on
chromosomes in an F2 intercross progeny of the Otsuka
Long-Evans Tokushima Fatty (OLETF) rat.4 The OLETF
rat strain is an animal model of non-insulin dependent
diabetes mellitus (NIDDM). These rats exhibit hyper-
glycemia, hyperinsulinemia, insulin resistance, and obe-
sity, as well as showing glucose intolerance.4 In our study
we used F344 rats as a non-diabetic control strain. A co-
hort of male (female OLETF × male F344)F2 intercross
progeny including 157 rats was studied.

We used 279 microsatellite markers to determine the
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Figure 1: OLETF F2.

genotype of each individual. As shown in Fig. 1, in the F2 intercross progeny,
marker loci on the autosomes indicate the genotypes of the OLETF homozy-
gote, the F344 homozygote, and the heterozygote (O/O, F/F, and O/F, respec-
tively). For the marker loci on the X-chromosome, we also use the notations
of O/O and F/F for the hemizygote genotypes of O and F. Recently, more
than five thousand microsatellite markers have been identified and shown to
be densely spaced throughout the entire genome.10 Thanks to the heigh density
of the map, in this study we assume that QTLs are linked to marker loci.
Multiple Factors. However, pointwise estimation of the evidence for a QTL
assumes that the markers are not correlated with each other. Therefore, the
next task is to clarify the interactions between the trait-causing marker loci.
In order to reflect the effects of the multiple marker loci on the explained trait
value, a multiple linear regression model provides a theoretical expansion of
the simple regression model.

However, as mentioned by Zeng,11 a multiple linear regression model still
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Figure 2: Effects of multiple markers. (A, B) Pointwise estimation of markers’ significance
along chromosomes 1 and 17. (C) Significance of marker pairs on chromosomes 1 × 17 (the
red spot indicates a significant pair). Attached bar charts correspond to (A) and (B). We

can observe the correlated effects between these chromosomes.
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assumes additivity of the QTL effects between loci. Even if one can construct
a multiple linear regression model which adequately explains a quantitative
trait, it is difficult to interpret the model (i.e., its partial coefficiencies) except
when the markers behave independently of each other.

Actually, selectivity and correlation between marker loci have been found
in this study. Fig. 2A and Fig. 2B show the pointwise estimation of the sig-
nificance of O/O genotype at marker loci along chromosome 1 and 17. The
significance is expressed by inter-class variance (as discussed later, this quan-
tity is equivalent to the LOD score). On chromosome 1, we have a major peak
around marker D1Rat90 , and a minor peak around marker D1Mit12 (Fig. 2A).
On the other hand, when we focus on the co-existence of O/O genotype at two
marker loci on chromosomes 1 and 17, we have a peak only around the marker
pair D1Mit12 × D17Mgh2 (the red spot in Fig. 2C). Thus, consideration of
the synergetic effects between markers is indispensable for analysis of multiple
factors.

2 Method

Association Studies. In a given dataset, association study tries to extract
latent rules, for instance; “If marker A is homozygous and marker B is also
homozygous, then the trait value is high.”

The dataset consists of genotype in-
formation at marker loci and the quanti-
tative trait values of interest in each indi-
vidual. If we letmj,i denote the genotype
at jth marker locus in the ith individual,
and Φi denote the trait value in the ith
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Figure 3: Dataset.

individual, the total data can be summarized in a table as Fig. 3 (M and N are
the numbers of markers and individuals, respectively). In this study, we call
the judgment whether or not the jth marker locus has the genotype v in the
ith individual a primitive test on the jth marker and denote it as (mj,i = v).

To investigate the relations between particular genotypes at multiple marker
loci and the quantitative trait value, we use a conjunctive rule as follows:

Gi = (mj1,i = v1) and · · · and (mjk ,i = vk), (1)

where k is a given constant number and Gi returns true if all the primitive
tests hold, otherwise returns false. According to whether or not each individual
satisfies the rule Gi, we divide the set of individuals S into two subsets S0 and
S1, letting S0 and S1 respectively consist of the individuals that do not satisfy
Gi and those that satisfy it (we call this operation division by Gi). Here, if the
rule can sort out a subset S1 which contains most of the individuals with high
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Figure 4: Data division in terms of genotype information. (A) The original distribution of
the blood glucose level in the population of 157 OLETF rats. (B) The distribution in the
population of 44 rats which satisfy the rule (D1Rat90 = O/O). The peak (130-220 mg/dl) is
blunted and the average shifted to the right (183.9 to 199.6 mg/dl). (C) The distribution in
the population of 13 rats which satisfy the rule (D1Rat90 = O/O) and (D14Rat13 = O/O).
The peak in (A) disappeared and the rats with poor glucose tolerance remained (average is

251.5 mg/dl).

trait values, then the marker loci which constitute the rule Gi are considered
to be related to the trait. Fig. 4 shows an example of the division of the
population of 157 OLETF rats in terms of genotype information.

The reason why we employed a conjunctive rule is that it can determine
the correlated effects of the marker loci on the quantitative trait value. The
traditional LOD score, on the other hand, misses the correlated effects since it
essentially focuses on only the one-to-one relationships between a marker and
the trait value.
Significance of a Rule. To evaluate the significance of the division by a
rule, we use inter-class variance (ICV) defined as follows:

ICV = |S0|(µ0 − µ)2 + |S1|(µ1 − µ)2, (2)

where |S0| and |S1| are the numbers of individuals in S0 and S1 respectively,
µ, µ0, and µ1 are respectively the average values of the quantitative trait in S,
S0, and S1. The ICV indicates the degree of shift of the average values in the
subsets (µ0 and µ1) from the average in the total dataset (µ) with reflecting
the sizes of the subsets (|S0| and |S1|). Greater inter-class variance means the
division is more significant.

Note that the definition of the ICV (Eq. 2) is a simple function. On the
other hand, as discussed in the next section, calculation of the LOD score
requires maximization of the likelihood Eq. 5. Especially in the interval map-
ping method,6 the maximization of the likelihood requires a method such as
the EM algorithm and calculation steps are iterated until the likelihood con-
verges to the maximum (it is not solved analytically). The evaluation of the
putative marker loci between neighboring two loci has introduced the calcu-
lation above. However, if we assume that the density of today’s markers is
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sufficient for pointwise estimation of QTLs along the genome, ICV is suitable
for evaluating the combinations of markers due to its simple definition.

3 Statistical Background of ICV

In this section we discuss the relation between the ICV and the LOD score. We
introduce the definition and show that finding peaks of the LOD score along
the genome is equivalent to finding those of the ICV.
Lod Score. On the assumption that the summation of the effects of multiple
marker loci defines the quantitative trait, the LOD score analysis uses a simple
regression model. In a population of N individuals, we use the genotypes ofM
marker loci and observational data of the quantitative trait. Using the above
assumption, this method estimates the effect of each marker independently. For
a given marker locus, let gi be an indicator variable which shows the genotype
in the ith individual, and when the marker genotype in the ith individual
has a particular genotype (e.g., OLETF homozygous), gi takes 1, otherwise it
takes 0, and let Φi be the observation of the quantitative trait value in the ith
individual. Using these variables we construct a regression model as follows (a
and b are regression coefficiencies):

Φi = a+ bgi + ε. (3)

In this model, b corresponds to the effects of the genotype at the marker locus.
ε is a normal variable with mean 0 and variance v. Using the assumption that
the error term ε follows the normal distribution, the probability that ε takes
a value x is defined as follows:

z(x, v) =
1√
2πv

exp
(−x2

2v

)
. (4)

Thus, the probability that the observation of the quantitative trait values would
have occurred under this parameterized model (likelihood) is

L(a, b, v) =
n∏

i=1

z(Φi − (a+ bgi), v). (5)

We determine the unknown parameters a, b, and v so that this likelihood is
maximized and let the solutions (called maximum likelihood estimators) be â,
b̂, and v̂, respectively. The obtained likelihood L(â, b̂, v̂) is compared to the
likelihood that the marker locus has no effect on the quantitative trait (i.e.,
b = 0). Let L(µ̂, 0, v̂0) denote the latter likelihood (µ̂ and v̂0 are the average
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and the variance of the quantitative trait in the N individuals, respectively).
The LOD score is the logarithm of the ratio:

LOD = log10

(
L(â, b̂, v̂)
L(µ̂, 0, v̂0)

)
= α(lnL(â, b̂, v̂) − lnL(µ̂, 0, v̂0)), (6)

where α = 1/ln10 > 0 is a constant number. Note that the term lnL(µ̂, 0, v̂0) is
constant. A LOD score greater than a statistical threshold constitutes evidence
for a QTL. In this article, maximization of the LOD score means finding the
marker locus which maximizes the LOD score.
Relation between LOD Score and ICV. Thus far, we introduced two
statistics: the ICV and the LOD score. At a glance, they appear to be different.
However, we can prove that calculation of the ICV of the data division in terms
of the genotype at a single marker locus is essentially equivalent to that of the
LOD score.

Let S0 and S1 be the populations of individuals whose gi is 0 and 1,
respectively (S0 = {i|gi = 0} and S1 = {i|gi = 1}). Let µ0 and µ1 denote the
averages of Φi in S0 and S1.
Lemma 1 Maximization of the LOD score is equivalent to that of

lnL(â, b̂, v̂) = −n ln
√

2π +−n
2

ln v̂ − n
2
, (7)

where

v̂ =
1
n

n∑
i=1

(Φi − (â + b̂gi))2, (8)

â =
∑
i∈S0

Φi/|S0| = µ0, b̂ =
∑
i∈S1

Φi/|S1| −
∑
i∈S0

Φi/|S0| = µ1 − µ0. (9)

Proof. Likelihood is given by

L(a, b, v) =
n∏

i=1

z(Φi − (a+ bgi), v) (10)

=
(

1√
2π

)n (1
v

)n
2

exp

(
− 1

2v

n∑
i=1

(Φi − (a+ bgi))2
)
. (11)

Log-likelihood is given by

lnL(a, b, v) = −n ln
√

2π − n
2

ln v − 1
2v

n∑
i=1

(Φi − (a+ bgi))2. (12)

By differentiating the log-likelihood with respect to v, a, and b, and setting
the derivatives equal to zero, we have the maximum likelihood estimators of
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v, a, and b as follows:

∂lnL
∂v

= − 1
2v

(
n− 1

v

n∑
i=1

(Φi − (a+ bgi))2
)

= 0, (13)

∂lnL
∂a

=
1
σ2

(∑
i∈S0

(Φi − a) +
∑
i∈S1

(Φi − (a+ b))

)
= 0, (14)

∂lnL
∂b

=
1
σ2

∑
i∈S1

(Φi − (a+ b)) = 0. (15)

v̂ =
1
n

n∑
i=1

(Φi − (â+ b̂gi))2, (16)

â =
∑
i∈S0

Φi/|S0| = µ0, b̂ =
∑
i∈S1

Φi/|S1| −
∑
i∈S0

Φi/|S0| = µ1 − µ0 (17)

From Eq. 12 and Eq. 16 we have

lnL(â, b̂, v̂) = −n ln
√

2π − n
2

ln v̂ − n
2

(18)

Lemma 2 Maximization of the LOD score is equivalent to minimization of v̂.
Proof. LOD = α(lnL(â, b̂, v̂)−lnL(µ̂, 0, v̂0)) where α > 0 is a constant number.
Since v̂ ≥ 0, dLOD

dv̂ = −αn
2v̂ ≤ 0. Therefore, maximization of the LOD score is

equivalent to minimization of v̂

Lemma 3 Minimization of v̂ is equivalent to maximization of the ICV.
Proof. Let S0 and S1 be the sets of individuals whose gi is 0 and 1, respectively,
and let µ0 and µ1 denote the averages of Φi in S0 and S1. Let S be S0 ∪ S1.
We can rewrite v̂ = 1

n

(∑
i∈S0

(Φi − µ0)2 +
∑

i∈S1
(Φi − µ1)2

)
= 1

n
(
∑

i∈S Φ
2
i −

(|S0|µ2
0 + |S1|µ2

1)). Since ICV = −nµ2 + (|S0|µ2
0 + |S1|µ2

1), minimization of v̂
is equivalent to maximization of ICV . Thus, maximization of the LOD score
is equivalent to that of the ICV

Theorem 1 Maximization of the LOD score is equivalent to that of the ICV.
Proof. From Lemma 2 and Lemma 3

Thus, calculation of the LOD score at a marker locus is equivalent to that
of the ICV of the data division in terms of the genotype at the marker.

Handling Multiple Markers. Based on the properties above, we can define
the LOD score that can evaluate the effects of multiple markers. Calculation
of the ICV of the data division by a rule Gi = (mj1,i = v1) and · · · and
(mjk,i = vk) is equivalent to regression of the data on the model as follows:

Φi = a+ bGi + ε. (19)
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Except for Gi, definitions of the variables are the same as those in Eq. 3. In
this regression model, coefficiency b is the phenotypic effect of the co-existence
of particular genotypes (v1, · · · , vk) at multiple marker loci (mj1,i, · · · , mjk,i).
Here, we can use the same definitions of the likelihood function and the LOD
score as those in Eq. 5 and Eq. 6, respectively, since the definitions do not
depend on the definition of gi in Eq. 5. The significant combination of marker
loci associated with the quantitative trait value is found by selecting a set of
marker loci which maximizes the ICV of the data division according to their
genotype information. This provides a multi-dimensional expansion of the
LOD score.

4 Search Program

Graph Search for Conjunctions. Consider all the conjunctions of the
form (mj1,i = v1)×· · ·× (mjk,i = vk), where vn = 0 or 1. We first remark that
it is NP-hard to compute the optimal conjunction that maximizes the ICV.7

One common approach to such optimization problems is an iterative improve-
ment graph search algorithm that initially selects a candidate conjunction by
using a greedy algorithm and then tries to improve the ensemble of candidate
conjunctions by local search heuristics. To avoid the repetition of visiting the
same node, conventional graph search algorithms maintain the list of visited
nodes,5 which however could be a severe bottleneck of parallel execution. We
instead proposed a rule of rewriting a conjunction to others.8 We first apply
the rewriting rule to the initial conjunction to obtain child conjunctions, and
then we repeat application of the rule to descendant conjunctions so that we
can visit every conjunction just once without maintaining the list of visited
conjunctions. Moreover, each application of the rewriting rule can be well
parallelized.

For a dataset with a Boolean target attribute (e.g., indicating whether dis-
eased or not), we have developed a branch-and-bound heuristics appropriate
for the significance of correlation between a conjunction and the target at-
tribute (expressed by χ2 value).8 For a dataset with a numeric target attribute
such as the glucose level, a similar heuristics based on the convexity of the ICV
is also available to prune the search space.
Implementation. We wrote a search program in the C++ language and
parallelized it with the POSIX thread library on two commercially available
parallel computers: the Sun Microsystems Enterprise 10000 (64 UltraSPARCII
[250MHz] processors) and the SGI Origin2000 (128 R10000 [195MHz] proces-
sors). For a dataset of an intercross population, it can use primitive tests of
the form (mj,i = O/O), (mj,i = F/F), (mj,i = O/F), and (mj,i = O/O or
O/F) to reveal the dominant and the recessive effects of the marker loci.
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In this work, we mainly focused on the effects of the combinations of two
markers. Therefore, we first executed the program under the restriction k = 2,
and then compared the results with those under the condition k = 1, 3, and 4.
We calculated the ICV of the data division by all the combinations of k markers
without the branch-and-bound heuristics. During parallel execution, we used
calculation of the ICV of the data division by each marker combination as the
unit of computing, since they can be carried out simultaneously. To distribute
the computing among multiple P processors we statically divided the set of
unit of computing into disjoint P subsets evenly and assigned them to the
processors. Each processor iterates the calculation of the ICV indicated in the
assigned subset. When all the processors complete the calculation the program
terminates. The required computation time for calculation of the ICVs for all
the combinations of two markers using the dataset with 157 individuals and 279
markers is 16 seconds (Origin2000) and 37 seconds (Enterprise 10000). These
results correspond to an 85-fold and a 50-fold calculation speedup, respectively.
Calculation speedup scaled almost linearly with respect to the number of the
processors used.

5 Results
To find significant conjunctive rules with respect to oral glucose tolerance (mea-
sured as the postprandial blood glucose level at 60 minutes after oral admin-
istration) we calculated ICVs of the data division by all the combinations of
the k markers out of 279 markers (k = 1, 2, 3, and 4). In this section we
focus on the rules which use the primitive tests of the form (mj,i = O/O). For
simplicity, we denote a rule Gi = (mj1,i = O/O) and · · · and (mjk,i = O/O) as
mj1 × · · · ×mjk .
Single Marker. Fig. 5 shows the ICV of the data division in terms of a
single marker rule at each marker locus along chromosomes 1, 5, 7, 14, 17,
and X. For example, we can observe ICV peaks in the region around markers
D1Rat90, D7Wox6, and D14Mit5. These three marker loci on chromosomes
1, 7, and 14 correspond respectively to the significant loci designated Dmo1,
Dmo2, and Dmo3 which have been found by traditional LOD score analysis.4

We also have a peak on chromosome 14 near marker Cckar 34.9cM apart from
D14Mit5. This marker also has been known to be related to the Cc-kar gene.4,9

The weak peak around D1Mit12 on chromosome 1 and DxMgh2 on chromosome
X are also known to be linked to the oral glucose tolerance (OGT).4,9

Two Markers. To assess the effects of the co-existence of O/O genotypes
at pairs of marker loci, we calculated the ICV of the data division by all the
possible conjunctive rules which consist of two markers (mj1 ×mj2 , 1 ≤ j1 <
j2 ≤ 279). According to the calculated ICV we sorted the rules and picked
up the pairs of chromosomes on which exist marker pairs with high ICVs. We
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Figure 5: ICV of the data division in terms of the genotype at each marker locus along
chromosomes (1, 5, 7, 14, 17, and X). Small rectangular marks correspond to markers. The

horizontal axis indicates the genetic distance (cM) between markers.

Table 1: The pairs of markers significant to oral glucose tolerance (OGT).

Chr×Chr mj1 × mj2 ICV |S1| µ1 |S0| µ0 F
1×14 D1Rat90×D14Rat13 64762 13 251.5 144 177.8 58.5
1×14 D1Rat166×Cckar 58426 12 251.0 145 178.4 50.9
7×14 D7Wox6×D14Mit5 62715 13 250.4 144 177.9 56.0
17×14 At1×D14Mit5 62428 8 270 149 179.3 55.7
1×5 D1Md19Mit9×D5Mgh14 57047 13 247.4 144 178.2 49.3
7×X D7Wox6×DxMgh2 59115 11 254.6 146 178.6 51.7
1×17 D1Mit12×D17Mgh2 62670 7 276.4 150 179.6 56.0

have significant pairs of markers on the pairs of chromosomes: 1×14, 7×14,
17×14, 1×17, 7×X, and 1×5. Table 1 lists the pairs of markers with a high
ICV on those chromosome pairs.

At first glance, all the markers in the rules have an ICV peak even with
a single marker alone (cf. Fig. 5), and each marker works in an additive
manner. However, we can observe selectivity among the marker pairs. For
example, the first four marker pairs in Table 1 use markers on chromosomes 1,
7, and 17 as the counterparts of those on chromosome 14. The three markers
on chromosome 14 used in the pairs D14Mit5, D14Rat13, and Cckar exist in
this order on chromosome 14, and their relative distances from D14Mit5 are
respectively 0, 23.3, and 34.9 cM. Other marker pairs on the chromosome pairs
do not make the ICV high. For example, the ICV of D1Rat90 × D14Mit5 is
34831. This shows that a pair of markers does not make the ICV high even if
each of the two markers does alone.

Plotting the ICV on a two-dimensional plane spanned by two chromosomes
makes this clearer. Fig. 6 shows all the combinations of markers on the pairs of
chromosomes (1×14, 17×14, 1×17, 7×14, 1×5, and 7×X). A spot corresponds
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to a pair of markers and its color indicates the ICV (red indicates a high ICV).
Bar charts attached to the vertical and the horizontal axes show the the ICV of
the data division by a single marker on each axis (they correspond to Fig. 5).
Observe that the markers in the region D14Rat13–Cckar on chromosome 14
make the ICV high when they are paired with the those around D1Rat90 on
chromosome 1 (Fig. 6A). However, D14Mit5 does not exert this influence under
the same condition. On the other hand, D14Mit5 makes the ICV high when
it is paired with the markers around At1 on chromosome 17 but those in the
region D14Rat13–Cckar do not (Fig. 6B). When the markers on chromosome
14 are paired with those on chromosome 7, pairs of markers work almost in an
additive manner and we can observe two peaks in the region corresponding to
the D14Rat13–Cckar and around D14Mit5 (Fig. 6D). A similar situation can be
found on chromosome 1. When the markers on chromosome 1 are paired with
those on chromosome 17, the red region around D1Rat90 in Fig. 6A disappears
and another peak appears around D1Mit12 × D17Mgh2 instead (Fig. 6C).
More Than Two Markers. When the rules consist of three markers, we
found high ICV values in the three-dimensional space, for example, around
(D7Mit16 × D14Mit5 × DxMgh2), (D7Wox6 × D14Mit5 × At1), and (D1Md19-
Mit9 × D5Mgh14 × Cckar). The ICV of these rules are 86821, 83712, and
80651, respectively. For the rules consisting of four markers, we observed ICV
peaks around (D7Mit16 × D14Mit5 × DxMgh2 × D7Wox6) and (D7Wox6 ×
D14Mit5 × At1 × D17Mgh2). Note that two markers on the same chromo-
some appear in the rules. In the former rule, D7Wox6 and D7Mit16 are 3.7 cM
distant from each other on chromosome 7, and in the latter, At1 and D17Mgh2
are 35.8 cM distant on chromosome 17. In these rules, the fourth markers are
not effective compared to the above rules which use three markers (the ICV
and the number of rats which make the rule true have not changed by the
additional markers).

6 Conclusion
We have focused on the relation between the multiple marker loci and the
quantitative trait. To investigate the effects of multiple marker loci, we di-
vided the set of the individuals into two subsets according to a judgement
whether or not each individual has particular genotypes at multiple marker
loci. We formalized the judgement regarding genotypes as a conjunctive rule
and estimated the significance of the rule in terms of inter-class variance. The
proposed method can determine the significant combinations of marker loci by
finding the rule accompanied by a high ICV. We also showed that finding the
significant marker loci based on inter-class variance is equivalent to that based
on the traditional LOD score.

The application of the above method on the OLETF model rat of non-
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Figure 6: The ICV of the data division by two markers. Attached bar charts show the ICV
of the data division by a single marker on each axis.
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insulin dependent diabetes mellitus (NIDDM) has found the combinations of
marker loci significant to oral glucose tolerance (OGT). Plotting the ICV on
a two-dimensional plane spanned by two chromosomes presents clearly the re-
lation among the marker loci. We can observe selectivity in the effects of the
marker combinations. This property of the marker loci cannot be discovered
solely by analysis of one-to-one relationships between a marker locus and the
quantitative trait, as seen in the calculation of the LOD score along chromo-
somes. Thus, we have proposed a new method of QTLs analysis and showed
its usefulness using experimental results in conjunction with real data.
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